Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Development ; 141(15): 2921-3, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25053425

RESUMO

The pluripotency factor POU5F1 (OCT4) is well known as a key regulator of stem cell fate. Homologues of POU5F1 exist throughout vertebrates, but the evolutionary and functional relationships between the various family members have been unclear. The level to which function has been conserved within this family provides insight into the evolution of early embryonic potency. Here, we seek to clarify the relationship between POU5F1 homologues in the vertebrate lineage, both phylogenetically and functionally. We resolve the confusion over the identity of the zebrafish gene, which was originally named pou2, then changed to pou5f1 and again, more recently, to pou5f3. We argue that the use of correct nomenclature is crucial when discussing the degree to which the networks regulating early embryonic differentiation are conserved.


Assuntos
Fator 3 de Transcrição de Octâmero/genética , Proteínas de Peixe-Zebra/genética , Animais , Diferenciação Celular , Linhagem da Célula , Biologia do Desenvolvimento/normas , Humanos , Fator 3 de Transcrição de Octâmero/fisiologia , Filogenia , Células-Tronco/citologia , Terminologia como Assunto , Vertebrados , Peixe-Zebra , Proteínas de Peixe-Zebra/fisiologia
2.
Dev Biol ; 315(1): 161-72, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18234171

RESUMO

Little is known of the control of gene expression in the animal hemisphere of the Xenopus embryo. Here we show that expression of FoxI1e, a gene essential for normal ectoderm formation, is expressed regionally within the animal hemisphere, in a highly dynamic fashion. In situ hybridization shows that FoxI1e is expressed in a wave-like fashion that is initiated on the dorsal side of the animal hemisphere, extends across to the ventral side by the mid-gastrula stage, and is then turned off in the dorsal ectoderm, the neural plate, at the neurula stage. It is confined to the inner layers of cells in the animal cap, and is expressed in a mosaic fashion throughout. We show that this dynamic pattern of expression is controlled by both short- and long-range signals. Notch signaling controls both the mosaic, and dorsal/ventral changes in expression, and is controlled, in turn, by Vg1 signaling from the vegetal mass. FoxI1e expression is also regulated by nodal signaling downstream of VegT. Canonical Wnt signaling contributes only to late changes in the FoxI1e expression pattern. These results provide new insights into the roles of vegetally localized mRNAs in controlling zygotic genes expressed in the animal hemisphere by long-range signaling. They also provide novel insights into the role of Notch signaling at the earliest stages of vertebrate development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/genética , Animais , Ectoderma/fisiologia , Embrião não Mamífero , Feminino , Fatores de Transcrição Forkhead , Gástrula , Hibridização In Situ , Microinjeções , Modelos Biológicos , Placa Neural/fisiologia , Oligonucleotídeos Antissenso/farmacologia , RNA Mensageiro/administração & dosagem , Receptores Notch/metabolismo , Fatores de Transcrição/genética , Xenopus/embriologia , Xenopus/crescimento & desenvolvimento , Proteínas de Xenopus/genética
3.
Mech Dev ; 122(3): 333-54, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15763211

RESUMO

The Xenopus T box family member VegT is expressed maternally in the vegetal hemisphere of the embryo. Mis-expression of VegT in prospective ectodermal tissue causes ectopic activation of mesodermal and endodermal markers, and ablation of VegT transcripts prevents proper formation of the mesendoderm, with the entire embryo developing as epidermis. These observations define VegT as a key initiator of mesendodermal development in the Xenopus embryo, and in an effort to understand how it exerts its effects we have used microarray analysis to compare gene expression in control animal caps with that in ectodermal tissue expressing an activated form of VegT. This procedure allowed the identification of 99 potential VegT targets, and we went on to study the expression patterns of these genes and then to ask, for those that are expressed in mesoderm or endoderm, which are direct targets of VegT. The putative regulatory regions of the resulting 14 genes were examined for T domain binding sites, and we also asked whether their expression is down-regulated in embryos in which VegT RNA is ablated. Finally, the functions of these genes were assayed by both over-expression and by use of antisense morpholino oligonucleotides. Our results provide new insights into the function of VegT during early Xenopus development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Análise em Microsséries/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas com Domínio T/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/genética , Animais , Sítios de Ligação , DNA Complementar/metabolismo , Regulação para Baixo , Endoderma/metabolismo , Técnicas Genéticas , Genoma , Hibridização In Situ , Mesoderma/metabolismo , Modelos Genéticos , Hibridização de Ácido Nucleico , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , RNA/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima , Proteínas de Xenopus/genética
4.
Mech Dev ; 117(1-2): 337-42, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12204281

RESUMO

LRP5 and LRP6 comprise a subfamily of lipoprotein-receptor related proteins that function as co-receptors for Wnt proteins. Mutation of human LRP5 is responsible for osteoporosis-pseudoglioma syndrome and disruption of Lrp6 in mice causes similar effects to mutation of several different Wnt genes. We have cloned Xenopus homologues of Lrp5 and Lrp6 (Xlrp5, Xlrp6) and examined their expression during embryogenesis. Both genes are expressed maternally and ubiquitously through early development. At later stages, Xlrp5 is found in the eye, forebrain, hindbrain, branchial arches and the tip of the tail bud. Xlrp6 is expressed throughout the central nervous system, branchial arches, in the eye and otic vesicle. Both genes are also expressed at the intersomitic boundary. These results suggest roles for Wnt signaling via LRP proteins in these tissues.


Assuntos
Receptores de LDL/genética , Xenopus laevis/embriologia , Xenopus laevis/genética , Proteínas de Peixe-Zebra , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hibridização In Situ , Proteínas Relacionadas a Receptor de LDL , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos , Dados de Sequência Molecular , Mutação , Osteoporose/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores de LDL/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Proteínas Wnt , Xenopus laevis/metabolismo
5.
J Orthop Res ; 33(8): 1142-51, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25807894

RESUMO

Restoring the native structure of the tendon enthesis, where collagen fibers of the midsubstance are integrated within a fibrocartilaginous structure, is problematic following injury. As current surgical methods fail to restore this region adequately, engineers, biologists, and clinicians are working to understand how this structure forms as a prerequisite to improving repair outcomes. We recently reported on the role of Indian hedgehog (Ihh), a novel enthesis marker, in regulating early postnatal enthesis formation. Here, we investigate how inactivating the Hh pathway in tendon cells affects adult (12-week) murine patellar tendon (PT) enthesis mechanics, fibrocartilage morphology, and collagen fiber organization. We show that ablating Hh signaling resulted in greater than 100% increased failure insertion strain (0.10 v. 0.05 mm/mm, p<0.01) as well as sub-failure biomechanical deficiencies. Although collagen fiber orientation appears overtly normal in the midsubstance, ablating Hh signaling reduces mineralized fibrocartilage by 32%, leading to less collagen embedded within mineralized tissue. Ablating Hh signaling also caused collagen fibers to coalesce at the insertion, which may explain in part the increased strains. These results indicate that Ihh signaling plays a critical role in the mineralization process of fibrocartilaginous entheses and may be a novel therapeutic to promote tendon-to-bone healing.


Assuntos
Tecido Conjuntivo/fisiologia , Proteínas Hedgehog/fisiologia , Patela/fisiologia , Transdução de Sinais/fisiologia , Tendões/fisiologia , Animais , Fenômenos Biomecânicos , Masculino , Camundongos , Camundongos Knockout , Tendões/citologia
6.
Gene Expr Patterns ; 4(2): 167-81, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15161097

RESUMO

Mouse primordial germ cells (PGCs) are migratory until they colonize the genital ridges, assemble with the somatic tissue, and start to differentiate into oocytes or spermatogonia. Using cell transplantation experiments, we show here that germ cells isolated during migration (at E10.5) will migrate actively to the genital ridges, whereas post-migratory PGCs isolated from E12.5 embryos are non-motile even when transferred into a permissive environment (e.g. E10.5 host tissue). Major transcriptional changes must take place between E10.5 and E12.5 that convert germ cells from a migratory to a non-migratory state. To identify the genes involved, we have performed transcriptional profiling of motile and non-motile populations of PGCs. We have identified 55 transcripts that are expressed in E10.5 PGCs at levels at least 3 x their expression at E12.5, and 48 transcripts with the reciprocal expression levels. Additionally, 309 transcripts were found to be expressed in both populations. Many of the E10.5 transcripts encode proteins involved in controlling cytoskeletal and adhesive interactions implicated in cell motility. Many of the E12.5 transcripts encode proteins implicated in germ cell differentiation.


Assuntos
Expressão Gênica/fisiologia , Óvulo/fisiologia , Espermatozoides/fisiologia , Células-Tronco/fisiologia , Animais , Movimento Celular/fisiologia , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos
7.
Development ; 136(8): 1295-303, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19279135

RESUMO

Steel factor is an essential survival and proliferation factor for primordial germ cells (PGCs) during their migration in the early mouse embryo. PGCs arise during gastrulation, and migrate into the posterior endoderm that becomes the hindgut. Previous reports have suggested that PGCs become dependent on Steel factor when they colonize the hindgut. However, in the absence of a good marker for living PGCs, their behavior before hindgut colonization has not been previously studied. We report here the normal behavior of PGCs in live embryos before hindgut colonization, and the roles of Steel factor, using a reporter line in which GFP is driven by the promoter of the Stella gene, whose activation accompanies the initial specification of PGCs. We show first that PGCs are surrounded by Steel factor-expressing cells from their first appearance in the allantois to the time they enter the genital ridges. Second, fewer PGCs are found in the allantois in Steel-null embryos, but this is not due to a failure of PGC specification. Third, the analysis of cultured Steel-null early embryos shows that Steel factor is required for normal PGC motility, both in the allantois and in the hindgut. Germ cells migrate actively in the allantois, and move directionally from the allantois into the proximal epiblast. In the absence of Steel factor, caused by either null mutation or antibody blockade, PGC motility is dramatically decreased, but directionality is maintained, demonstrating a primary role for Steel factor in PGC motility. This was found both before and after colonization of the hindgut. These data, together with previously published data, show that PGCs are Steel factor dependent from their initial specification until they colonize the genital ridges, and suggest the existence of a ;spatio-temporal niche' that travels with this important pluripotential cell population in the embryo.


Assuntos
Alantoide/citologia , Alantoide/metabolismo , Células Germinativas/citologia , Células Germinativas/metabolismo , Fator de Células-Tronco/metabolismo , Nicho de Células-Tronco/citologia , Nicho de Células-Tronco/metabolismo , Alantoide/embriologia , Animais , Morte Celular , Movimento Celular , Sobrevivência Celular , Sistema Digestório/citologia , Sistema Digestório/embriologia , Sistema Digestório/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Fator de Células-Tronco/genética , Fatores de Tempo
8.
Development ; 133(1): 15-20, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16308332

RESUMO

Xenopus Vg 1, a transforming growth factor beta (Tgfbeta) family member, was one of the first maternally localized mRNAs identified in vertebrates. Its restriction to the vegetal pole of the egg made it the ideal candidate to be the mesoderm-inducing signal released by vegetal cells, but its function in vivo has never been resolved. We show that Vg 1 is essential for Xenopus embryonic development, and is required for mesoderm induction and for the expression of several key Bmp antagonists. Although the original Vg 1 transcript does not rescue Vg 1-depleted embryos, we report that a second allele is effective. This work resolves the mystery of Vg 1 function, and shows it to be an essential maternal regulator of embryonic patterning.


Assuntos
Padronização Corporal/fisiologia , Indução Embrionária/genética , Glicoproteínas/metabolismo , Mesoderma/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Xenopus/embriologia , Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Indução Embrionária/fisiologia , Hibridização In Situ , Dados de Sequência Molecular , Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas de Xenopus
9.
Dev Biol ; 289(2): 318-28, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16325796

RESUMO

Wnt signaling pathways have essential roles in developing embryos and adult tissue, and alterations in their function are implicated in many disease processes including cancers. The major nuclear transducers of Wnt signals are the Tcf/LEF family of transcription factors, which have binding sites for both the transcriptional co-repressor groucho, and the co-activator beta-catenin. The early Xenopus embryo expresses three maternally inherited Tcf/LEF mRNAs, and their relative roles in regulating the expression of Wnt target genes are not understood. We have addressed this by using antisense oligonucleotides to deplete maternal XTcf1 and XTcf4 mRNAs in oocytes. We find that XTcf1 represses expression of Wnt target genes ventrally and laterally, and activates their expression dorsally. Double depletions of XTcf1 and XTcf3 suggest that they act cooperatively to repress Wnt target genes ventrally. In contrast, XTcf4 has no repressive role but is required to activate expression of Xnr3 and chordin in organizer cells at the gastrula stage. This work provides evidence for distinct roles for XTcfs in regulating Wnt target gene expression.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 1 de Transcrição de Linfócitos T/metabolismo , Fatores de Transcrição TCF/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Embrião não Mamífero/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fator 1 de Transcrição de Linfócitos T/genética , Fatores de Transcrição TCF/genética , Proteína 1 Semelhante ao Fator 7 de Transcrição , Proteína 2 Semelhante ao Fator 7 de Transcrição , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/genética , Xenopus/embriologia , Xenopus/metabolismo , Proteínas de Xenopus/genética
10.
Proc Natl Acad Sci U S A ; 103(44): 16313-8, 2006 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17060633

RESUMO

Jun NH(2)-terminal kinases (JNKs) regulate convergent extension movements in Xenopus embryos through the noncanonical Wnt/planar cell polarity pathway. In addition, there is a high level of maternal JNK activity spanning from oocyte maturation until the onset of gastrulation that has no defined functions. Here, we show that maternal JNK activation requires Dishevelled and JNK is enriched in the nucleus of Xenopus embryos. Although JNK activity is not required for the glycogen synthase kinase-3-mediated degradation of beta-catenin, inhibition of the maternal JNK signaling by morpholino-antisense oligos causes hyperdorsalization of Xenopus embryos and ectopic expression of the Wnt/beta-catenin target genes. These effects are associated with an increased level of nuclear and nonmembrane-bound beta-catenin. Moreover, ventral injection of the constitutive-active Jnk mRNA blocks beta-catenin-induced axis duplication, and dorsal injection of active Jnk mRNA into Xenopus embryos decreases the dorsal marker gene expression. In mammalian cells, activation of JNK signaling reduces Wnt3A-induced and beta-catenin-mediated gene expression. Furthermore, activation of JNK signaling rapidly induces the nuclear export of beta-catenin. Taken together, these results suggest that JNK antagonizes the canonical Wnt pathway by regulating the nucleocytoplasmic transport of beta-catenin rather than its cytoplasmic stability. Thus, the high level of sustained maternal JNK activity in early Xenopus embryos may provide a timing mechanism for controlling the dorsal axis formation.


Assuntos
Vértebra Cervical Áxis/metabolismo , Núcleo Celular/metabolismo , Embrião não Mamífero/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Xenopus/embriologia , Xenopus/metabolismo , beta Catenina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Vértebra Cervical Áxis/embriologia , Linhagem Celular , Proteínas Desgrenhadas , Embrião não Mamífero/embriologia , Ativação Enzimática , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Mães , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transporte Proteico , Transcrição Gênica/genética , Proteínas Wnt/metabolismo
11.
Development ; 132(4): 805-16, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15659484

RESUMO

The mechanisms that control shape and rigidity of early embryos are not well understood, and yet are required for all embryonic processes to take place. In the Xenopus blastula, the cortical actin network in each blastomere is required for the maintenance of overall embryonic shape and rigidity. However, the mechanism whereby each cell assembles the appropriate pattern and number of actin filament bundles is not known. The existence of a similar network in each blastomere suggests two possibilities: cell-autonomous inheritance of instructions from the egg; or mutual intercellular signaling mediated by cell contact or diffusible signals. We show that intercellular signaling is required for the correct pattern of cortical actin assembly in Xenopus embryos, and that lysophosphatidic acid (LPA) and its receptors, corresponding to LPA1 and LPA2 in mammals, are both necessary and sufficient for this function.


Assuntos
Actinas/metabolismo , Blástula/metabolismo , Citoesqueleto/metabolismo , Lisofosfolipídeos/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Sequência de Aminoácidos , Animais , Blástula/citologia , Comunicação Celular/fisiologia , Feminino , Dados de Sequência Molecular , Oócitos/citologia , Oócitos/metabolismo , Homologia de Sequência de Aminoácidos , Xenopus/embriologia , Xenopus/metabolismo
12.
Development ; 132(12): 2825-36, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15930112

RESUMO

As the fertilized Xenopus egg undergoes sequential cell divisions to form a blastula, each cell develops a network of cortical actin that provides shape and skeletal support for the whole embryo. Disruption of this network causes loss of shape and rigidity of the embryo, and disrupts gastrulation movements. We previously showed that lysophosphatidic acid (LPA) signaling controls the change in cortical actin density that occurs at different stages of the cell cycle. Here, we use a gain-of-function screen, using an egg cDNA expression library, to identify an orphan G protein-coupled cell-surface receptor (XFlop) that controls the overall amount of cortical F-actin. Overexpression of XFlop increases the amount of cortical actin, as well as embryo rigidity and wound healing, whereas depletion of maternal XFlop mRNA does the reverse. Both overexpression and depletion of XFlop perturb gastrulation movements. Reciprocal rescue experiments, and comparison of the effects of their depletion in early embryos, show that the XLPA and XFlop signaling pathways play independent roles in cortical actin assembly, and thus that multiple signaling pathways control the actin skeleton in the blastula.


Assuntos
Actinas/metabolismo , Córtex Cerebelar/embriologia , Citoesqueleto/metabolismo , Embrião não Mamífero/embriologia , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Córtex Cerebelar/metabolismo , Embrião não Mamífero/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Lisofosfolipídeos/metabolismo , Dados de Sequência Molecular , Mutação/genética , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Alinhamento de Sequência , Transdução de Sinais , Fatores de Tempo , Cicatrização , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Xenopus laevis/genética
13.
Development ; 132(5): 977-86, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15689379

RESUMO

In early vertebrate development, apicobasally polarised blastomeres divide to produce inner non-polarised cells and outer polarised cells that follow different fates. How the polarity of these early blastomeres is established is not known. We have examined the role of Crumbs3, Lgl2 and the apical aPKC in the polarisation of frog blastomeres. Lgl2 localises to the basolateral membrane of blastomeres, while Crumbs3 localises to the apical and basolateral membranes. Overexpression aPKC and Crumbs3 expands the apical domain at the expense of the basolateral and repositions tight junctions in the new apical-basolateral interface. Loss of aPKC function causes loss of apical markers and redirects basolateral markers ectopically to the apical membrane. Cell polarity and tight junctions, but not cell adhesion, are lost and outer polarised cells become inner-like apolar cells. Overexpression of Xenopus Lgl2 phenocopies the aPKC knockout, suggesting that Lgl2 and aPKC act antagonistically. This was confirmed by showing that aPKC and Lgl2 can inhibit the localisation of each other and that Lgl2 rescues the apicalisation caused by aPKC. We conclude that an instrumental antagonistic interaction between aPKC and Lgl2 defines apicobasal polarity in early vertebrate development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Glicoproteínas de Membrana/fisiologia , Proteína Quinase C/fisiologia , beta Carioferinas/fisiologia , Animais , Domínio Catalítico , Linhagem da Célula , Sequência Conservada , DNA/metabolismo , Embrião não Mamífero/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Substâncias Macromoleculares , Camundongos , Microscopia de Fluorescência , Modelos Biológicos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , RNA/metabolismo , Junções Íntimas/metabolismo , Fatores de Tempo , Xenopus
14.
Development ; 132(24): 5399-409, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16291796

RESUMO

Fibroblast growth factor (FGF) signaling is thought to play a role in germ cell behavior. FGF2 has been reported to be a mitogen for primordial germ cells in vitro, whilst combinations of FGF2, steel factor and LIF cause cultured germ cells to transform into permanent lines of pluripotent cells resembling ES cells. However, the actual function of FGF signaling on the migrating germ cells in vivo is unknown. We show, by RT-PCR analysis of cDNA from purified E10.5 germ cells, that germ cells express two FGF receptors: Fgfr1-IIIc and Fgfr2-IIIb. Second, we show that FGF-mediated activation of the MAP kinase pathway occurs in germ cells during their migration, and thus they are potentially direct targets of FGF signaling. Third, we use cultured embryo slices in simple gain-of-function experiments, using FGF ligands, to show that FGF2, a ligand for FGFR1-IIIc, affects motility, whereas FGF7, a ligand for FGFR2-IIIb, affects germ cell numbers. Loss of function, using a specific inhibitor of FGF signaling, causes increased apoptosis and inhibition of cell shape change in the migrating germ cells. Lastly, we confirm in vivo the effects seen in slice cultures in vitro, by examining germ cell positions and numbers in embryos carrying a loss-of-function allele of FGFR2-IIIb. In FGFR2-IIIb(-/-) embryos, germ cell migration is unaffected, but the numbers of germ cells are significantly reduced. These data show that a major role of FGF signaling through FGFR2-IIIb is to control germ cell numbers. The data do not discriminate between direct and indirect effects of FGF signaling on germ cells, and both may be involved.


Assuntos
Movimento Celular/fisiologia , Células Germinativas/fisiologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Processamento Alternativo , Animais , Contagem de Células , Embrião de Mamíferos/citologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Feminino , Fator 2 de Crescimento de Fibroblastos/fisiologia , Fator 7 de Crescimento de Fibroblastos/fisiologia , Células Germinativas/citologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Pirróis/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais
15.
Development ; 131(10): 2431-41, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15128672

RESUMO

The transcription factor VegT, is required in early Xenopus embryos for the formation of both the mesoderm and endoderm germ layers. Inherited as a maternal mRNA localized only in vegetal cells, VegT activates the transcription of a large number of transcription factors, as well as signaling ligands that induce cells in the vegetal mass to form endoderm, and the marginal zone to form mesoderm. It is important now to understand the extent to which transcription factors downstream of VegT play individual, or overlapping, roles in the specification and patterning of the endoderm and mesoderm. In addition, it is important to understand the mechanism that specifies the boundary between endoderm and mesoderm. One of the downstream targets of VegT, the homeodomain protein Mixer, is expressed at high levels at the mesoderm/endoderm boundary at the late blastula stage. We therefore examined its functions by blocking its translation using morpholino oligos. In Mixer-depleted embryos, the expression of many signaling ligands and transcription factors was affected. In particular, we found that the expression of several genes, including several normally expressed in mesoderm, was upregulated. Functional assays of Mixer-depleted vegetal cells showed that they have increased mesoderm-inducing activity. This demonstrates that Mixer plays an essential role in controlling the amount of mesoderm induction by the vegetal cells.


Assuntos
Padronização Corporal/fisiologia , Embrião não Mamífero/fisiologia , Proteínas de Homeodomínio/fisiologia , Fatores de Transcrição/fisiologia , Proteínas de Xenopus/genética , Xenopus laevis/embriologia , Animais , Sequência de Bases , Blástula , Anormalidades Congênitas/genética , Embrião não Mamífero/citologia , Endoderma/fisiologia , Gástrula/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Mesoderma/fisiologia , Dados de Sequência Molecular , Oligorribonucleotídeos/química , Técnicas de Cultura de Órgãos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Zigoto/fisiologia
16.
Dev Biol ; 261(2): 337-52, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-14499645

RESUMO

In Xenopus embryos, body patterning and cell specification are initiated by transcription factors, which are themselves transcribed during oogenesis, and their mRNAs are stored for use after fertilization. We have previously shown that the T-box transcription factor VegT is both necessary and sufficient to initiate transcription of all endoderm, and most mesoderm genes. In the absence of maternal VegT, no mesodermal organs (including the heart) or endodermal organs form. A second maternal transcription factor XTcf3 acts as a global repressor of transcription of dorsal genes, whose repression is inactivated on the dorsal side by a maternally encoded Wnt signaling pathway. In the absence of beta-catenin, no mesodermal or endodermal organs form. We show here that the maternally encoded transcription factor CREB is also essential for development. It is required for the initiation of expression of several mesodermal genes, including Xbra, Xcad2, and -3 and also regulates the cardiogenic gene Nkx 2-5. We show that maternal CREB-depleted embryos develop gastrulation defects that are rescued by the reintroduction of activated CREB mRNA. We conclude that maternal CREB must be added to the list of essential maternal transcription factors regulating cell specification in the early embryo.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Embrião não Mamífero/metabolismo , Fatores de Transcrição , Proteínas de Peixe-Zebra , Sequência de Aminoácidos , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Feminino , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/metabolismo , Dados de Sequência Molecular , Oócitos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Proteínas Wnt , Xenopus , Proteínas de Xenopus/metabolismo
17.
Development ; 131(20): 5065-78, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15459100

RESUMO

FoxH1 (Fast1) was first characterized as the transcriptional partner for Smad proteins. Together with Smad2/4, it forms the activin response factor (ARF) that binds to the Mix.2 promoter in Xenopus embryos. Foxh1 is expressed maternally in Xenopus. Depletion of maternal Foxh1 mRNA results in abnormalities of head and dorsal axis formation. We show that FoxH1 is required, together with XTcf3/beta catenin, to activate the zygotic expression of the nodal gene, Xnr3 in a Smad2-independent manner. In contrast, maternal FoxH1 acts as an inhibitor of Xnr5 and 6 transcription, preventing their upregulation on the ventral side of the embryo, by the maternal T-box transcription factor VegT. We conclude that maternal FoxH1 has essential, context-dependent roles in regulating the pattern of zygotic gene expression in the early embryo.


Assuntos
Padronização Corporal/fisiologia , Proteínas de Ligação a DNA/metabolismo , Embrião não Mamífero/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Feminino , Fatores de Transcrição Forkhead , Genes Reporter , Cabeça/embriologia , Proteína Nodal , Ligantes da Sinalização Nodal , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/metabolismo , Xenopus , Proteínas de Xenopus/metabolismo
18.
Development ; 130(10): 2199-212, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12668633

RESUMO

Convergent extension behaviour is critical for the formation of the vertebrate body axis. In Xenopus, components of the Wnt signaling pathway have been shown to be required for convergent extension movements but the relationship between cell fate and morphogenesis is little understood. We show by loss of function analysis that Xnr3 activates Xbra expression through FGFR1. We show that eFGF activity is not essential in the pathway, and that dishevelled acts downstream of Xnr3 and not in a parallel pathway. We provide evidence for the involvement of the EGF-CFC protein FRL1, and suggest that the pro-domain of Xnr3 may be required for its activity. Since Xnr3 is a direct target of the maternal betacatenin/XTcf3 signaling pathway, it provides the link between the initial, maternally controlled, allocation of cell fate, and the morphogenetic movements of cells derived from the organizer.


Assuntos
Padronização Corporal/fisiologia , Movimento Celular/fisiologia , Glicoproteínas , Peptídeos e Proteínas de Sinalização Intercelular , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Xenopus laevis/embriologia , Animais , Biomarcadores , Regulação da Expressão Gênica no Desenvolvimento , Oligonucleotídeos Antissenso/metabolismo , Oócitos/fisiologia , Organizadores Embrionários/fisiologia , Fenótipo , Proteínas/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Receptores de Fatores de Crescimento de Fibroblastos/genética , Transdução de Sinais/fisiologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fator de Crescimento Transformador beta/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/fisiologia
19.
Dev Biol ; 272(2): 351-61, 2004 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15282153

RESUMO

As in many other animals, the primordial germ cells (PGCs) in avian and reptile embryos are specified in positions distinct from the positions where they differentiate into sperm and egg. Unlike in other organism however, in these embryos, the PGCs use the vascular system as a vehicle to transport them to the region of the gonad where they exit the blood vessels and reach their target. To determine the molecular mechanisms governing PGC migration in these species, we have investigated the role of the chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) in guiding the cells towards their target in the chick embryo. We show that sdf-1 mRNA is expressed in locations where PGCs are found and towards which they migrate at the time they leave the blood vessels. Ectopically expressed chicken SDF-1alpha led to accumulation of PGCs at those positions. This analysis, as well as analysis of gene expression and PGC behavior in the mouse embryo, suggest that in both organisms, SDF-1 functions during the second phase of PGC migration, and not at earlier phases. These findings suggest that SDF-1 is required for the PGCs to execute the final migration steps as they transmigrate through the blood vessel endothelium of the chick or the gut epithelium of the mouse.


Assuntos
Movimento Celular/fisiologia , Quimiocinas CXC/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Óvulo/citologia , Espermatozoides/citologia , Sequência de Aminoácidos , Animais , Vasos Sanguíneos/citologia , Vasos Sanguíneos/embriologia , Movimento Celular/genética , Quimiocina CXCL12 , Embrião de Galinha , Clonagem Molecular , Sistema Digestório/citologia , Sistema Digestório/embriologia , Indução Embrionária/genética , Células Epiteliais/fisiologia , Feminino , Técnicas In Vitro , Masculino , Camundongos , Dados de Sequência Molecular , Ovário/citologia , Ovário/embriologia , Óvulo/fisiologia , Homologia de Sequência de Aminoácidos , Espermatozoides/fisiologia , Testículo/citologia , Testículo/embriologia
20.
Development ; 130(18): 4279-86, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12900445

RESUMO

In mouse embryos, germ cells arise during gastrulation and migrate to the early gonad. First, they emerge from the primitive streak into the region of the endoderm that forms the hindgut. Later in development, a second phase of migration takes place in which they migrate out of the gut to the genital ridges. There, they co-assemble with somatic cells to form the gonad. In vitro studies in the mouse, and genetic studies in other organisms, suggest that at least part of this process is in response to secreted signals from other tissues. Recent genetic evidence in zebrafish has shown that the interaction between stromal cell-derived factor 1 (SDF1) and its G-protein-coupled receptor CXCR4, already known to control many types of normal and pathological cell migrations, is also required for the normal migration of primordial germ cells. We show that in the mouse, germ cell migration and survival requires the SDF1/CXCR4 interaction. First, migrating germ cells express CXCR4, whilst the body wall mesenchyme and genital ridges express the ligand SDF1. Second, the addition of exogenous SDF1 to living embryo cultures causes aberrant germ cell migration from the gut. Third, germ cells in embryos carrying targeted mutations in CXCR4 do not colonize the gonad normally. However, at earlier stages in the hindgut, germ cells are unaffected in CXCR4(-/-) embryos. Germ cell counts at different stages suggest that SDF1/CXCR4 interaction also mediates germ cell survival. These results show that the SDF1/CXCR4 interaction is specifically required for the colonization of the gonads by primordial germ cells, but not for earlier stages in germ cell migration. This demonstrates a high degree of evolutionary conservation of part of the mechanism, but also an area of evolutionary divergence.


Assuntos
Movimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Quimiocinas CXC/metabolismo , Células Germinativas/fisiologia , Receptores CXCR4/metabolismo , Animais , Padronização Corporal , Quimiocina CXCL12 , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Embrião não Mamífero , Células Germinativas/citologia , Gônadas/crescimento & desenvolvimento , Mucosa Intestinal/metabolismo , Intestinos/citologia , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Receptores CXCR4/genética , Transgenes , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA