Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Hepatology ; 60(2): 576-87, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24492943

RESUMO

UNLABELLED: Wnt signaling is important for cancer pathogenesis and is often up-regulated in hepatocellular carcinoma (HCC). Heparan sulfate proteoglycans (HSPGs) function as coreceptors or modulators of Wnt activation. Glypican-3 (GPC3) is an HSPG that is highly expressed in HCC, where it can attract Wnt proteins to the cell surface and promote cell proliferation. Thus, GPC3 has emerged as a candidate therapeutic target in liver cancer. While monoclonal antibodies to GPC3 are currently being evaluated in preclinical and clinical studies, none have shown an effect on Wnt signaling. Here, we first document the expression of Wnt3a, multiple Wnt receptors, and GPC3 in several HCC cell lines, and demonstrate that GPC3 enhanced the activity of Wnt3a/ß-catenin signaling in these cells. Then we report the identification of HS20, a human monoclonal antibody against GPC3, which preferentially recognized the heparan sulfate chains of GPC3, both the sulfated and nonsulfated portions. HS20 disrupted the interaction of Wnt3a and GPC3 and blocked Wnt3a/ß-catenin signaling. Moreover, HS20 inhibited Wnt3a-dependent cell proliferation in vitro and HCC xenograft growth in nude mice. In addition, HS20 had no detectable undesired toxicity in mice. Taken together, our results show that a monoclonal antibody primarily targeting the heparin sulfate chains of GPC3 inhibited Wnt/ß-catenin signaling in HCC cells and had potent antitumor activity in vivo. CONCLUSION: An antibody directed against the heparan sulfate of a proteoglycan shows efficacy in blocking Wnt signaling and HCC growth, suggesting a novel strategy for liver cancer therapy.


Assuntos
Anticorpos Monoclonais/imunologia , Carcinoma Hepatocelular/imunologia , Glipicanas/imunologia , Heparitina Sulfato/imunologia , Neoplasias Hepáticas/imunologia , Via de Sinalização Wnt/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Técnicas de Visualização da Superfície Celular , Feminino , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Via de Sinalização Wnt/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/imunologia
2.
Arch Biochem Biophys ; 509(2): 147-56, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21402050

RESUMO

Secreted frizzled-related protein (sFRP)-1 is a Wnt antagonist that inhibits breast carcinoma cell motility, whereas the secreted glycoprotein thrombospondin-1 stimulates adhesion and motility of the same cells. We examined whether thrombospondin-1 and sFRP-1 interact directly or indirectly to modulate cell behavior. Thrombospondin-1 bound sFRP-1 with an apparent K(d)=48nM and the related sFRP-2 with a K(d)=95nM. Thrombospondin-1 did not bind to the more distantly related sFRP-3. The association of thrombospondin-1 and sFRP-1 is primarily mediated by the amino-terminal N-module of thrombospondin-1 and the netrin domain of sFRP-1. sFRP-1 inhibited α3ß1 integrin-mediated adhesion of MDA-MB-231 breast carcinoma cells to a surface coated with thrombospondin-1 or recombinant N-module, but not adhesion of the cells on immobilized fibronectin or type I collagen. sFRP-1 also inhibited thrombospondin-1-mediated migration of MDA-MB-231 and MDA-MB-468 breast carcinoma cells. Although sFRP-2 binds similarly to thrombospondin-1, it did not inhibit thrombospondin-1-stimulated adhesion. Thus, sFRP-1 binds to thrombospondin-1 and antagonizes stimulatory effects of thrombospondin-1 on breast carcinoma cell adhesion and motility. These results demonstrate that sFRP-1 can modulate breast cancer cell responses by interacting with thrombospondin-1 in addition to its known effects on Wnt signaling.


Assuntos
Neoplasias da Mama/metabolismo , Mama/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Trombospondina 1/metabolismo , Motivos de Aminoácidos , Mama/patologia , Neoplasias da Mama/patologia , Adesão Celular , Linhagem Celular Tumoral , Feminino , Glicoproteínas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/química , Fator de Crescimento Neural/química , Trombospondina 1/química
3.
Cancer Res ; 78(13): 3659-3671, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29712692

RESUMO

Oncogenic activation of the ETS-related gene (ERG) by recurrent gene fusions (predominantly TMPRSS2-ERG) is one of the most validated and prevalent genomic alterations present in early stages of prostate cancer. In this study, we screened small-molecule libraries for inhibition of ERG protein in TMPRSS2-ERG harboring VCaP prostate cancer cells using an In-Cell Western Assay with the highly specific ERG-MAb (9FY). Among a subset of promising candidates, 1-[2-Thiazolylazo]-2-naphthol (NSC139021, hereafter ERGi-USU) was identified and further characterized. ERGi-USU selectively inhibited growth of ERG-positive cancer cell lines with minimal effect on normal prostate or endothelial cells or ERG-negative tumor cell lines. Combination of ERGi-USU with enzalutamide showed additive effects in inhibiting growth of VCaP cells. A screen of kinases revealed that ERGi-USU directly bound the ribosomal biogenesis regulator atypical kinase RIOK2 and induced ribosomal stress signature. In vivo, ERGi-USU treatment inhibited growth of ERG-positive VCaP tumor xenografts with no apparent toxicity. Structure-activity-based derivatives of ERGi-USU recapitulated the ERG-selective activity of the parental compound. Taken together, ERGi-USU acts as a highly selective inhibitor for the growth of ERG-positive cancer cells and has potential for further development of ERG-targeted therapy of prostate cancer and other malignancies.Significance: A highly selective small-molecule inhibitor of ERG, a critical driver of early stages of prostate cancer, will be imperative for prostate cancer therapy. Cancer Res; 78(13); 3659-71. ©2018 AACR.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Compostos Azo/farmacologia , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Compostos Azo/uso terapêutico , Benzamidas , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Nus , Nitrilas , Proteínas de Fusão Oncogênica/genética , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Feniltioidantoína/uso terapêutico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/metabolismo , Bibliotecas de Moléculas Pequenas , Regulador Transcricional ERG/antagonistas & inibidores , Regulador Transcricional ERG/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Mol Cancer Res ; 15(10): 1308-1317, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28607007

RESUMO

The oncogenic activation of the ETS-related gene (ERG) due to gene fusions is present in over half of prostate cancers in Western countries. Because of its high incidence and oncogenic role, ERG and components of ERG network have emerged as potential drug targets for prostate cancer. Utilizing gene expression datasets, from matched normal and prostate tumor epithelial cells, an association of NOTCH transcription factors with ERG expression status was identified, confirming that NOTCH factors are direct transcriptional targets of ERG. Inhibition of ERG in TMPRSS2-ERG-positive VCaP cells led to decreased levels of NOTCH1 and 2 proteins and downstream transcriptional targets and partially recapitulated the phenotypes associated with ERG inhibition. Regulation of NOTCH1 and 2 genes by ERG were also noted with ectopic ERG expression in LNCaP (ERG-negative prostate cancer) and RWPE-1 (benign prostate-derived immortalized) cells. Furthermore, inhibition of NOTCH by the small-molecule γ-secretase inhibitor 1, GSI-1, conferred an increased sensitivity to androgen receptor (AR) inhibitors (bicalutamide and enzalutamide) or the androgen biosynthesis inhibitor (abiraterone) in VCaP cells. Combined treatment with bicalutamide and GSI-1 showed strongest inhibition of AR, ERG, NOTCH1, NOTCH2, and PSA protein levels along with decreased cell growth, cell survival, and enhanced apoptosis. Intriguingly, this effect was not observed in ERG-negative prostate cancer cells or immortalized benign/normal prostate epithelial cells. These data underscore the synergy of AR and NOTCH inhibitors in reducing the growth of ERG-positive prostate cancer cells.Implications: Combinational targeting of NOTCH and AR signaling has therapeutic potential in advanced ERG-driven prostate cancers. Mol Cancer Res; 15(10); 1308-17. ©2017 AACR.


Assuntos
Antagonistas de Androgênios/farmacologia , Oligopeptídeos/farmacologia , Neoplasias da Próstata/genética , Receptores Notch/genética , Androstenos/farmacologia , Anilidas/farmacologia , Benzamidas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Masculino , Nitrilas/farmacologia , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Receptores Notch/metabolismo , Compostos de Tosil/farmacologia , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo
5.
Genes Cancer ; 7(11-12): 394-413, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28191285

RESUMO

Overdiagnosis and overtreatment of prostate cancer (CaP) is attributable to widespread reliance on PSA screening in the US. This has prompted us and others to search for improved biomarkers for CaP, to facilitate early detection and disease stratification. In this regard, autoantibodies (AAbs) against tumor antigens could serve as potential candidates for diagnosis and prognosis of CaP. Towards this, our goals were: i) To investigate whether AAbs against ERG oncoprotein (overexpressed in 25-50% of Caucasian American and African American CaP) are present in the sera of CaP patients; ii) To evaluate an AAb panel to enhance CaP detection. The results using an enzyme-linked immunosorbent assay (ELISA) showed that anti-ERG AAbs are present in a significantly higher proportion in the sera of CaP patients compared to healthy controls (p = 0.0001). Furthermore, a panel of AAbs against ERG, AMACR and human endogenous retrovirus-K Gag successfully differentiated CaP patient sera from healthy controls (AUC = 0.791). These results demonstrate for the first time that anti-ERG AAbs are present in the sera of CaP patients. In addition, the data also suggest that AAbs against ERG together with AMACR and HERV-K Gag may be a useful panel of biomarkers for diagnosis and prognosis of CaP.

6.
Cell Signal ; 26(1): 94-101, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24080158

RESUMO

Wnt signaling regulates a variety of cellular processes during embryonic development and in the adult. Many of these activities are mediated by the Frizzled family of seven-pass transmembrane receptors, which bind Wnts via a conserved cysteine-rich domain (CRD). Secreted Frizzled-related proteins (sFRPs) contain an amino-terminal, Frizzled-like CRD and a carboxyl-terminal, heparin-binding netrin-like domain. Previous studies identified sFRPs as soluble Wnt antagonists that bind directly to Wnts and prevent their interaction with Frizzleds. However, subsequent observations suggested that sFRPs and Frizzleds form homodimers and heterodimers via their respective CRDs, and that sFRPs can stimulate signal transduction. Here, we present evidence that sFRP1 either inhibits or enhances signaling in the Wnt3a/ß-catenin pathway, depending on its concentration and the cellular context. Nanomolar concentrations of sFRP1 increased Wnt3a signaling, while higher concentrations blocked it in HEK293 cells expressing a SuperTopFlash reporter. sFRP1 primarily augmented Wnt3a/ß-catenin signaling in C57MG cells, but it behaved as an antagonist in L929 fibroblasts. sFRP1 enhanced reporter activity in L cells that were engineered to stably express Frizzled 5, though not Frizzled 2. This implied that the Frizzled expression pattern could determine the response to sFRP1. Similar results were obtained with sFRP2 in HEK293, C57MG and L cell reporter assays. CRDsFRP1 mimicked the potentiating effect of sFRP1 in multiple settings, contradicting initial expectations that this domain would inhibit Wnt signaling. Moreover, CRDsFRP1 showed little avidity for Wnt3a compared to sFRP1, implying that the mechanism for potentiation by CRDsFRP1 probably does not require an interaction with Wnt protein. Together, these findings demonstrate that sFRPs can either promote or suppress Wnt/ß-catenin signaling, depending on cellular context, concentration and most likely the expression pattern of Fzd receptors.


Assuntos
Glicoproteínas/metabolismo , Transdução de Sinais , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo , Animais , Receptores Frizzled/química , Receptores Frizzled/metabolismo , Células HEK293 , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Estrutura Terciária de Proteína , Ratos
7.
Mol Biol Cell ; 25(10): 1629-40, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24648492

RESUMO

Inhibition of casein kinase 1 delta (CK1δ) blocks primary ciliogenesis in human telomerase reverse transcriptase immortalized retinal pigmented epithelial and mouse inner medullary collecting duct cells-3. Mouse embryonic fibroblasts (MEFs) and retinal cells from Csnk1d (CK1δ)-null mice also exhibit ciliogenesis defects. CK1δ catalytic activity and centrosomal localization signal (CLS) are required to rescue cilia formation in MEFs(Csnk1d null). Furthermore, expression of a truncated derivative containing the CLS displaces full-length CK1δ from the centrosome and decreases ciliary length in control MEFs, suggesting that centrosomal CK1δ has a role in ciliogenesis. CK1δ inhibition also alters pericentrosomal or ciliary distribution of several proteins involved in ciliary transport, including Ras-like in rat brain-11A, Ras-like in rat brain-8A, centrosomal protein of 290 kDa, pericentriolar material protein 1, and polycystin-2, as well as the Golgi distribution of its binding partner, A-kinase anchor protein 450 (AKAP450). As reported for AKAP450, CK1δ was required for microtubule nucleation at the Golgi and maintenance of Golgi integrity. Overexpression of an AKAP450 fragment containing the CK1δ-binding site inhibits Golgi-derived microtubule nucleation, Golgi distribution of intraflagellar transport protein 20 homologue, and ciliogenesis. Our results suggest that CK1δ mediates primary ciliogenesis by multiple mechanisms, one involving its centrosomal function and another dependent on its interaction with AKAP450 at the Golgi, where it is important for maintaining Golgi organization and polarized trafficking of multiple factors that mediate ciliary transport.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Caseína Quinase Idelta/antagonistas & inibidores , Centrossomo/metabolismo , Cílios/metabolismo , Complexo de Golgi/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ancoragem à Quinase A/biossíntese , Animais , Antígenos de Neoplasias , Sítios de Ligação , Proteínas de Transporte , Caseína Quinase Idelta/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteínas do Citoesqueleto , Humanos , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/biossíntese , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno , Retina/citologia , Transdução de Sinais/genética , Canais de Cátion TRPP/metabolismo , Telomerase/genética , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA