Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Plant Physiol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652695

RESUMO

Centromeres in most multicellular eukaryotes are composed of long arrays of repetitive DNA sequences. Interestingly, several transposable elements, including the well-known long terminal repeat (LTR) retrotransposon CRM (centromeric retrotransposon of maize), were found to be enriched in functional centromeres marked by the centromeric histone H3 (CENH3). Here we report a centromeric long interspersed nuclear element (LINE), Celine, in Populus species. Celine has colonized preferentially in the CENH3-associated chromatin of every poplar chromosome, with 84% of the Celine elements localized in the CENH3-binding domains. By contrast, only 51% of the CRM elements were bound to CENH3 domains in Populus trichocarpa. These results suggest different centromere targeting mechanisms employed by Celine and CRM elements. Nevertheless, the high target specificity seems to be detrimental to further amplification of the Celine elements, leading to a shorter life span and patchy distribution among plant species compared to the CRM elements. Using a phylogenetically guided approach we were able to identify Celine-like LINE elements in tea plant (Camellia sinensis) and green ash tree (Fraxinus pennsylvanica). The centromeric localization of these Celine-like LINEs was confirmed in both species. We demonstrate that the centromere targeting property of Celine-like LINEs is of primitive origin and has been conserved among distantly related plant species.

2.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37373099

RESUMO

Poplar was one of the first woody species whose individual chromosomes could be identified using chromosome specific painting probes. Nevertheless, high-resolution karyotype construction remains a challenge. Here, we developed a karyotype based on the meiotic pachytene chromosome of Populus simonii which is a Chinese native species with many excellent traits. This karyotype was anchored by oligonucleotide (oligo)-based chromosome specific painting probes, a centromere-specific repeat (Ps34), ribosomal DNA, and telomeric DNA. We updated the known karyotype formula for P. simonii to 2n = 2x = 38 = 26m + 8st + 4t and the karyotype was 2C. The fluorescence in situ hybridization (FISH) results revealed some errors in the current P. simonii genome assembly. The 45S rDNA loci were located at the end of the short arm of chromosomes 8 and 14 by FISH. However, they were assembled on pseudochromosomes 8 and 15. In addition, the Ps34 loci were distributed in every centromere of the P. simonii chromosome in the FISH results, but they were only found to be present in pseudochromosomes 1, 3, 6, 10, 16, 17, 18, and 19. Our results reveal that pachytene chromosomes oligo-FISH is a powerful tool for constructing high-resolution karyotypes and improving the quality of genome assembly.


Assuntos
Populus , Hibridização in Situ Fluorescente/métodos , Populus/genética , Cromossomos de Plantas/genética , Cariotipagem , Cariótipo
3.
Biochem Biophys Res Commun ; 605: 97-103, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35316769

RESUMO

MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) are crucial for plant growth and development via mediating post-transcriptional gene silencing. In wild-type Arabidopsis, DICER-LIKE 2 (DCL2)-dependent 22-nt siRNAs are rare, whereas DCL1 and DCL4-dependent 21-nt miRNAs and siRNAs are highly abundant. DCL4 naturally inhibits DCL2 in producing abundant 22-nt siRNAs from endogenous transcripts, but whether DCL1 suppresses endogenous 22-nt siRNA production and the extent of repression are still unknown. Here, we report that DCL1 and DCL2 cleaved both miRNA precursors and coding transcript-derived double-stranded RNAs. In a dcl1 dcl4 double mutant, massive 22-nt siRNAs were produced from endogenous protein-coding genes (genic siRNAs). Compared with wild-type, the 22-nt genic siRNAs derived from the Nitrate Reductase 1 (NIA1), NIA2, DIACYLGLYCEROL ACYLTRANSFERASES 3 (DGAT3), SUPPRESSOR OF MAX2 1-LIKE 5 (SMXL5), and SMXL4 in dcl1 dcl4 increased up to 95%. Our analysis further indicated that the 22-nt genic siRNAs in dcl1 dcl4 were mainly loaded into ARGONAUTE 1 (AGO1) or AGO2. Thus, our results demonstrated that both DCL1 and DCL4 safeguard post-transcriptional gene silencing, preventing the production of DCL2-dependent 22-nt genic siRNAs from disrupting plant growth and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , RNA de Cadeia Dupla , RNA Interferente Pequeno/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo
4.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430756

RESUMO

The camphor tree (Cinnamomum camphora (L.) Presl.) is the representative species of subtropical evergreen broadleaved forests in eastern Asia and an important raw material for essential oil production worldwide. Although MYBs have been comprehensively characterized and their functions have been partially resolved in many plants, it has not been explored in C. camphora. In this study, 121 CcMYBs were identified on 12 chromosomes in the whole genome of C. camphora and found that CcMYBs were mainly expanded by segmental duplication. They were divided into 28 subgroups based on phylogenetic analysis and gene structural characteristics. In the promoter regions, numerous cis-acting elements were related to biological processes. Analysis of RNA sequencing data from seven tissues showed that CcMYBs exhibited different expression profiles, suggesting that they have various roles in camphor tree development. In addition, combined with the correlation analysis of structural genes in the flavonoid synthesis pathway, we identified CcMYBs from three subgroups that might be related to the flavonoid biosynthesis pathway. This study systematically analyzed CcMYBs in C. camphora, which will set the stage for subsequent research on the functions of CcMYBs during their lifetime and provide valuable insights for the genetic improvement of camphor trees.


Assuntos
Cinnamomum camphora , Óleos Voláteis , Cinnamomum camphora/genética , Cinnamomum camphora/química , Filogenia , Óleos Voláteis/química , Florestas , Flavonoides/metabolismo
5.
Plant J ; 101(2): 253-264, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31529535

RESUMO

The karyotype represents the basic genetic make-up of a eukaryotic species. Comparative cytogenetic analysis of related species based on individually identified chromosomes has been conducted in only a few plant groups and not yet in woody plants. We have developed a complete set of 19 chromosome painting probes based on the reference genome of the model woody plant Populus trichocarpa. Using sequential fluorescence in situ hybridization we were able to identify all poplar chromosomes in the same metaphase cells, which led to the development of poplar karyotypes based on individually identified chromosomes. We demonstrate that five Populus species, belonging to five different sections within Populus, have maintained a remarkably conserved karyotype. No inter-chromosomal structural rearrangements were observed on any of the 19 chromosomes among the five species. Thus, the chromosomal synteny in Populus has been remarkably maintained after nearly 14 million years of divergence. We propose that the karyotypes of woody species are more stable than those of herbaceous plants since it may take a longer period of time for woody plants to fix chromosome number or structural variants in natural populations.


Assuntos
Coloração Cromossômica/métodos , Cromossomos de Plantas , Cariótipo , Populus/genética , Aberrações Cromossômicas , DNA Ribossômico , Evolução Molecular , Genoma de Planta , Hibridização in Situ Fluorescente , Cariotipagem , Metáfase , Cromossomos Sexuais , Especificidade da Espécie , Sintenia
6.
Chromosome Res ; 28(2): 171-182, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32002727

RESUMO

Chromosome painting is a useful technique for distinguishing specific chromosomes (fragments), elucidating the genetic relationships of different genomes or chromosomes, and identifying chromosomal rearrangements. The development of chromosome- or genome-specific probes is fundamental for chromosome painting. The possibility for developing such probes specifically painting homoeologous chromosomes in allopolyploid species has been questioned since that chromosomes belonging to the same homoeologous group share highly conserved sequences. In the present study, we attempted to construct a wheat chromosome 4D-specific oligo probe library by selecting 4D-specific sequences in reference genome of common wheat cv. Chinese Spring (CS, 2n = 6x = 42, AABBDD). The synthesized library contains 27,392 oligos. Oligo painting using the probe library confirmed its specificity, shown by that only chromosome 4D could be painted in three wheat genotypes and CS nulli-tetrasomic line N4AT4D. Oligo painting was successfully used to define the 4D breakpoints in CS deletion lines involving 4D and two wheat-Haynaldia villosa 4D-4V translocation lines. Thirteen wheat relatives and a Triticum durum-H. villosa amphiploid were used for oligo painting. Except the 4D in two Aegilops tauschii accessions, the 4M in Ae. comosa and 4U in Ae. umbellulata could be painted. In tetraploid Ae. ventricosa, both 4D and 4M could be painted; however, the signal intensity of 4M was less compared with 4D. No painted chromosome was observed for the other alien species. This indicated that the relationship among D/M/U was closer than that among D/A/B as well as D with genomes H/R/Ss/Sc/Y/P/N/J. Our successful development of 4D-specific oligo probe library may serve as a model for developing oligo probes specific for other homoeologous chromosomes.


Assuntos
Coloração Cromossômica/métodos , Cromossomos de Plantas , Sondas de Oligonucleotídeos , Triticum/genética , Ciclo Celular , Biologia Computacional/métodos , Hibridização Genética , Hibridização in Situ Fluorescente , Cariótipo , Reprodutibilidade dos Testes , Translocação Genética , Triticum/classificação
7.
Yi Chuan ; 43(5): 397-424, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33972213

RESUMO

Cytogenetics was established based on the "Chromosome theory of inheritance", proposed by Boveri and Sutton and evidenced by Morgan's lab in early stage of the 20 th centrary. With rapid development of related research areas, especially molecular genetics, cytogenetics developed from traditional into a new era, molecular cytogenetics in late 1960s. Featured by an established technique named DNA in situ hybridization (ISH), molecular cytogenetics has been applied in various research areas. ISH provids vivid and straightforward figures showing the virtual presence of DNA, RNA or proteins. In combination with genomics and cell biology tools, ISH and derived techniques have been widely used in studies of the origin, evolution, domestication of human, animal and plant, as well as wide hybridization and chromosome engineering. The physical location and order of DNA sequences revealed by ISH enables the detection of chromosomal re-arrangments among related species and gaps of assembled genome sequences. In addition, ISH using RNA or protein probes can reveal the location and quantification of transcripted RNA or translated protein. Since the 1970s, scientists from universities or institutes belonging to the Jiangsu Society of Genetics have initiated cytogenetics researches using various plant species. In recent years, research platforms for molecular cytogenetics have also been well established in Nanjing Agricultural University, Yangzhou University, Nanjing Forestry University, Jiangsu Xuhuai Academy of Agricultural Sciences, and Jiangsu Normal University. The application of molecular cytogenetics in plant evolution, wide hybridization, chromosome engineering, chromosome biology, genomics has been successful. Significant progresses have been achieved, both in basic and applied researches. In this paper, we will review main research progresses of plant cytogenetics in Jiangsu province, and discuss the potential development of this research area.


Assuntos
Genômica , Plantas , Animais , Análise Citogenética , Citogenética , Humanos , Hibridização In Situ
8.
Chromosoma ; 127(3): 313-321, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29520650

RESUMO

Dioecious species accounted for 6% of all plant species, including a number of crops and economically important species, such as poplar. However, sex determination and sex chromosome evolution have been studied only in few dioecious species. In poplar, the sex-determining locus was mapped to chromosome 19. Interestingly, this locus was mapped to either a peritelomeric or a centromeric region among different poplar species. We developed an oligonucleotide (oligo)-based chromosome painting probe based on the sequence of chromosome 19 from Populus trichocarpa. We performed chromosome painting in P. tomentosa and P. deltoides. Surprisingly, the distal end on the short arm of chromosome 19, which corresponds to the location of the sex-determining locus reported in several species, was not painted in both species. Thus, the DNA sequences associated with this region have not been anchored to the current chromosome 19 pseudomolecule, which was confirmed by painting of somatic metaphase chromosome 19 of P. trichocarpa. Interestingly, the unpainted distal ends of the two chromosome 19 did not pair at the pachytene stage in 22-24% of the meiotic cells in the two species, suggest that these regions from the sex chromosomes have structurally diverged from each other, resulting in the reduced pairing frequency. These results shed light on divergence of a pair of young sex chromosomes in poplar.


Assuntos
Coloração Cromossômica , Mapeamento Físico do Cromossomo , Populus/genética , Cromossomos Sexuais , Pareamento Cromossômico , Cromossomos de Plantas , Hibridização in Situ Fluorescente , Especificidade da Espécie
9.
Int J Mol Sci ; 20(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683725

RESUMO

Agrobacterium-mediated genetic transformation is well established in the model grass Brachypodium distachyon. However, most protocols employ immature embryos because of their better regenerative capacity. A major problem associated with the immature embryo system is that they are available only during a limited time window of growing plants. In this study, we have developed an optimized Agrobacterium-mediated genetic transformation protocol that utilizes mature embryos. We have adopted seed shearing and photoautotrophic rooting (PR) in callus induction and root regeneration, respectively, with evident significant improvement in these aspects. We have also revealed that the newly developed chemical inducer Fipexide (FPX) had the ability to induce callus, shoots, and roots. By comparison, we have demonstrated that FPX shows higher efficiency in shoot generation than other frequently used chemicals in our mature embryo-based system. In addition, we demonstrated that the age of embryogenetic callus severely affects the transformation efficiency (TE), with the seven-week-old embryogenetic callus having the highest TE reaching 52.6%, which is comparable with that in immature embryo transformation. The new methodologies reported here will advance the development and utilization of Brachypodium as a new model system for grass genomics.


Assuntos
Brachypodium/genética , Sementes/genética , Técnicas de Cultura de Tecidos/métodos , Agrobacterium/fisiologia , Brachypodium/efeitos dos fármacos , Brachypodium/embriologia , Piperazinas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/embriologia , Raízes de Plantas/genética , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/embriologia , Brotos de Planta/genética , Plantas Geneticamente Modificadas , Regeneração/efeitos dos fármacos , Regeneração/genética , Sementes/efeitos dos fármacos , Sementes/embriologia , Transformação Genética
10.
iScience ; 26(4): 106496, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37096046

RESUMO

Poplar coma, commonly referred to as "seed hairs", is a tuft of trichomes attached to the seed coat that helps seed dispersal. However, they can also trigger health impacts for humans, including sneezing, shortness of breath, and skin irritation. Despite efforts to study the regulatory mechanism of herbaceous trichome formation, poplar coma remains poorly understood. In this study, we showed that the epidermal cells of the funiculus and placenta are the origin of poplar coma based on observations of paraffin sections. Small RNA (sRNA) and degradome libraries were also constructed at three stages of poplar coma development, including initiation and elongation stages. Based on 7,904 miRNA-target pairs identified by small RNA and degradome sequencing, we constructed a miRNA-transcript factor and a stage-specific miRNA regulatory network. By combining paraffin section observation and deep sequencing, our research will provide greater insight into the molecular mechanisms of poplar coma development.

11.
Plant Cell Rep ; 31(6): 1043-51, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22228557

RESUMO

An efficient in vitro mutagenesis protocol for Lilium longiflorum Thunb. cv. White fox has been established. The effect of 6-BA and NAA on adventitious bud formation from the bulblet-scale thin cell layers was tested. Results showed that the optimal medium for adventitious bud induction is MS basal medium supplemented with 2.0 mg/l 6-BA and 0.1 mg/l NAA. The differentiation frequency and the average number of adventitious buds reached 95.55% and 3.00, respectively. Various doses (0.0, 0.5, 1.0, 1.5, 2.0, and 2.5 Gy) of gamma rays were applied to investigate the effect of radiation on adventitious bud formation from bulblet-scale thin cell layers. The forming capacity of the adventitious buds significantly decreased with the increase of radiation dose. The results suggested that the optimal irradiation dose is 1.0 Gy. Dose of 1.0 Gy treatment resulted in 55.33% survival of irradiated bulblet-scale thin cell layers and 39.27% mutagenesis rate. The genetic variations among the morphological mutants were evaluated by DNA fingerprinting using ISSR molecular marker. The genetic variation frequency reached 36.06% using seven ISSR primers. Out of the 50 mutant lines transferred to the greenhouse, 9 were observed to have significantly different morphological characters than those of the controls.


Assuntos
Lilium/genética , Repetições de Microssatélites/genética , Mutagênese/genética , Mutação/genética , Compostos de Benzil , Relação Dose-Resposta à Radiação , Flores/efeitos dos fármacos , Flores/crescimento & desenvolvimento , Flores/efeitos da radiação , Raios gama , Cinetina/farmacologia , Lilium/citologia , Lilium/efeitos dos fármacos , Lilium/efeitos da radiação , Mutagênese/efeitos dos fármacos , Mutagênese/efeitos da radiação , Ácidos Naftalenoacéticos/farmacologia , Fenótipo , Purinas , Esterilização
12.
Front Genet ; 13: 760690, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222527

RESUMO

The endosperm is a vital storage tissue in plant seeds. It provides nutrients to the embryos or the seedlings during seed development and germination. Although the genetic information in the endosperm cannot be passed directly to the next generation, its inherited epigenetic marks affect gene expression and its development and, consequently, embryo and seed growth. DNA methylation is a major form of epigenetic modification that can be investigated to understand the epigenome changes during reproductive development. Therefore, it is of great significance to explore the effects of endosperm DNA methylation on crop yield and traits. In this review, we discuss the changes in DNA methylation and the resulting imprinted gene expression levels during plant endosperm development, as well as their effects on seed development.

13.
Genes (Basel) ; 12(10)2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34680862

RESUMO

Brachypodium distachyon, a new monocotyledonous model plant, has received wide attention in biological research due to its small genome and numerous genetic resources. Codon usage bias is an important feature of genes and genomes, and it can be used in transgenic and evolutionary studies. In this study, the nucleotide compositions and patterns of codon usage bias were calculated using Codon W. Additionally, an ENC plot, Parity rule 2 and correspondence analyses were used to explore the major factors influencing codon usage bias patterns. The numbers of hydrogen bonds and skews were used to analyze the GC trend in the 5'-ends of the coding sequences. The results showed that minor differences in the codon usage bias patterns were revealed by the ENC plot, Parity rule 2 and correspondence analyses. The analyses of the CG-skew and the number of hydrogen bonds showed a declining trend in the number of cytosines at the 5'-ends of the CDSs (from the 5'-ends to the 3'-ends), indicating that GC may play a major role in codon usage bias. In addition, our results laid a foundation for the study of codon usage bias patterns in Brachypodium genus and suggested that the GC plays a major role in determining these patterns.


Assuntos
Brachypodium/genética , Uso do Códon/genética , Códon/genética , Evolução Molecular , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Composição de Bases/genética , Sequência de Bases/genética , Citosina/análogos & derivados , Citosina/química , Ligação de Hidrogênio , Nucleotídeos/química , Nucleotídeos/genética
14.
Curr Protoc Plant Biol ; 1(4): 566-573, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31725965

RESUMO

A technique that produces large numbers of good quality pachytene chromosome preparations has been developed for Populus. Anthers at the pachytene stage of meiosis are used as materials. There are two main modifications in our method relative to the traditional squashing method that address the challenges the thick cytoplasm observed during the pachytene phase of meiosis presents. One is the temperature during squashing, i.e., the slide is placed on a 52°C heater for squashing. The other is the removal of the cover slip using 45% acetic acid. © 2016 by John Wiley & Sons, Inc.

15.
PLoS One ; 10(3): e0118831, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25799495

RESUMO

Lilium regale E.H. Wilson is endemic to a narrow geographic area in the Minjiang River valley in southwestern China, and is considered an important germplasm for breeding commercially valuable lily varieties, due to its vigorous growth, resistance to diseases and tolerance for low moisture. We analyzed the genetic diversity of eight populations of L. regale sampled across the entire natural distribution range of the species using Inter-Simple Sequence Repeat markers. The genetic diversity (expected heterozygosity= 0.3356) was higher than those reported for other narrowly distributed endemic plants. The levels of inbreeding (Fst = 0.1897) were low, and most of the genetic variability was found to be within (80.91%) than amongpopulations (19.09%). An indirect estimate of historical levels of gene flow (Nm =1.0678) indicated high levels of gene flow among populations. The eight analyzed populations clustered into three genetically distinct groups. Based on these results, we recommend conservation of large populations representing these three genetically distinct groups.


Assuntos
DNA de Plantas/genética , Lilium/genética , Repetições de Microssatélites , Polimorfismo Genético , Meio Selvagem , China , Fluxo Gênico , Rios , Análise de Sequência de DNA
16.
Plant Physiol Biochem ; 70: 483-91, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23851362

RESUMO

The cell wall plays crucial roles in establishing the morphology of the plant cell, defence response to biotic and abiotic stresses, and mechanical properties of organs. The COBRA gene encodes a putative glycosylphosphatidylinositol (GPI)-anchored protein that possesses the ability to modulate cellulose deposition and orient cell expansion in plant cell. We reported here the functional characterization of ClCOBL1, a conifer COBRA-like gene from the differentiating xylem of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook). ClCOBL1 belonged to a woody plant-specific clade of the COBRA protein family with several conserved motifs. Expression pattern demonstrated that ClCOBL1 was constitutively expressed but with high level in cambium region. ClCOBL1 protein was mainly located in the cell wall and plasma membrane. Overexpression of ClCOBL1 in tobacco plants yielded altered leaf adaxial-abaxial patterning and short, swollen corolla tubes. The changed leaf architecture in the ClCOBL1 overexpressors was associated with the differential expression of leaf adaxial-abaxial identity genes. Our results indicated that ClCOBL1 was involved in the determination of leaf dorsoventrality and anisotropic expansion possibly by affecting the expression of adaxial and abaxial identity genes.


Assuntos
Parede Celular/metabolismo , Cunninghamia/genética , Expressão Gênica , Genes de Plantas , Proteínas de Membrana/genética , Nicotiana/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Membrana Celular/metabolismo , Celulose/genética , Celulose/metabolismo , Sequência Conservada , Cunninghamia/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Proteínas de Membrana/metabolismo , Folhas de Planta/anatomia & histologia , Proteínas de Plantas/metabolismo , Nicotiana/anatomia & histologia , Nicotiana/metabolismo , Xilema/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA