Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Pathol ; 241(1): 67-79, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27741356

RESUMO

The gene encoding migration and invasion inhibitory protein (MIIP), located on 1p36.22, is a potential tumour suppressor gene in glioma. In this study, we aimed to explore the role and mechanism of action of MIIP in colorectal cancer (CRC). MIIP protein expression gradually decreased along the colorectal adenoma-carcinoma sequence and was negatively correlated with lymph node and distant metastasis in 526 colorectal tissue samples (p < 0.05 for all). Analysis of The Cancer Genome Atlas (TCGA) data showed that decreased MIIP expression was significantly associated with MIIP hemizygous deletion (p = 0.0005), which was detected in 27.7% (52/188) of CRC cases, and associated with lymph node and distant metastasis (p < 0.05 for both). We deleted one copy of the MIIP gene in HCT116 CRC cells using zinc finger nuclease technology and demonstrated that MIIP haploinsufficiency resulted in increased colony formation and cell migration and invasion, which was consistent with the results from siRNA-mediated MIIP knockdown in two CRC cell lines (p < 0.05 for all). Moreover, MIIP haploinsufficiency promoted CRC progression in vivo (p < 0.05). Genomic instability and spectral karyotyping assays demonstrated that MIIP haploinsufficiency induced chromosomal instability (CIN). Besides modulating the downstream proteins of APC/CCdc20 , securin and cyclin B1, MIIP haploinsufficiency inhibited topoisomerase II (Topo II) activity and induced chromosomal missegregation. Therefore, we report that MIIP is a novel potential tumour suppressor gene in CRC. Moreover, we characterized the MIIP gene as a novel CIN suppressor gene, through altering the stability of mitotic checkpoint proteins and disturbing Topo II activity. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Adenocarcinoma/genética , Proteínas de Transporte/genética , Instabilidade Cromossômica/genética , Neoplasias Colorretais/genética , Haploinsuficiência/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma/secundário , Animais , Proteínas de Transporte/biossíntese , Movimento Celular/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Progressão da Doença , Regulação para Baixo/genética , Feminino , Deleção de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos Nus , Invasividade Neoplásica , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Ensaio Tumoral de Célula-Tronco
2.
Invest New Drugs ; 32(6): 1105-1112, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25085205

RESUMO

Nonsteroidal anti-inflammatory drugs (NSAIDs) and selective cyclooxygenase-2 (COX-2) inhibitors (COXIBs) can reduce the risk of developing colorectal cancer (CRC) and are being considered for use as adjuvant therapy for treatment of CRC patients. However, long-term use of most NSAIDs, except aspirin, increases cardiovascular risk, hampering use of these drugs in CRC prevention and possibly for treatment. CG100649 is a new member of the COXIB family, which is proposed to inhibit both COX-2 and carbonic anhydrase-I/-II (CA-I/-II) activity. Using mouse models, we show here that CG100649 inhibits premalignant and malignant colorectal lesions in mouse models, partly through inhibiting tumor cell proliferation. These pre-clinical findings suggest a need for further exploration of CG100649 for CRC prevention and treatment. The long-term safety profile of CG100649, particularly regarding its effect on cardiovascular risk, is yet to be determined.


Assuntos
Adenoma/tratamento farmacológico , Antineoplásicos/uso terapêutico , Carcinoma/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Furanos/uso terapêutico , Sulfonamidas/uso terapêutico , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Dinoprostona/metabolismo , Furanos/farmacologia , Humanos , Camundongos , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Biochem J ; 395(3): 653-62, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16417524

RESUMO

The transactivation of nuclear receptors is regulated by both ligand binding and phosphorylation. We previously showed that RARalpha (retinoic acid receptor alpha) phosphorylation by c-Jun N-terminal kinase contributes to retinoid resistance in a subset of NSCLC cells (non-small cell lung cancer cells), but the aetiology of this resistance in the remainder has not been fully elucidated [Srinivas, Juroske, Kalyankrishna, Cody, Price, Xu, Narayanan, Weigel and Kurie (2005) Mol. Cell. Biol. 25, 1054-1069]. In the present study, we report that Akt, which is constitutively activated in NSCLC cells, phosphorylates RARalpha and inhibits its transactivation. Biochemical and functional analyses showed that Akt interacts with RARalpha and phosphorylates the Ser96 residue of its DNA-binding domain. Mutation of Ser96 to alanine abrogated the suppressive effect of Akt. Overexpression of a dominant-negative form of Akt in an NSCLC cell line decreased RAR phosphorylation, increased RAR transactivation and enhanced the growth-inhibitory effects of an RAR ligand. The findings presented here show that Akt inhibits RAR transactivation and contributes to retinoid resistance in a subset of NSCLC cells.


Assuntos
Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores do Ácido Retinoico/antagonistas & inibidores , Receptores do Ácido Retinoico/metabolismo , Ativação Transcricional , Animais , Linhagem Celular , Chlorocebus aethiops , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/genética , Humanos , Ligantes , Mutação/genética , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/genética , Receptor alfa de Ácido Retinoico , Retinoides/farmacologia , Especificidade por Substrato , Ativação Transcricional/genética
4.
Nat Med ; 18(2): 224-6, 2012 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-22270723

RESUMO

Although aberrant DNA methylation is considered to be one of the key ways by which tumor-suppressor and DNA-repair genes are silenced during tumor initiation and progression, the mechanisms underlying DNA methylation alterations in cancer remain unclear. Here we show that prostaglandin E(2) (PGE(2)) silences certain tumor-suppressor and DNA-repair genes through DNA methylation to promote tumor growth. These findings uncover a previously unrecognized role for PGE(2) in the promotion of tumor progression.


Assuntos
Metilação de DNA/efeitos dos fármacos , Dinoprostona/farmacologia , Neoplasias Intestinais/metabolismo , Animais , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/metabolismo , Reparo do DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Genes Supressores de Tumor/efeitos dos fármacos , Humanos , Neoplasias Intestinais/fisiopatologia , Camundongos , Regulação para Cima , DNA Metiltransferase 3B
6.
Cancers (Basel) ; 3(4): 3894-908, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-24213116

RESUMO

Colorectal cancer (CRC) is now the second-leading cause of cancer deaths in the USA. Colorectal cancer progression and metastasis depends on the orchestration of the aberrant signaling pathways that control tumor cell proliferation, survival and migration/invasion. Epidemiological, clinical, and animal studies have demonstrated that prostaglandin-endoperoxide synthase 2 (PTGS2) and epithelial growth factor (EGF) signaling pathways play key roles in promoting colorectal cancer growth and metastasis. In this review, we highlight major advances in our understanding of the roles of PTGS2 and EGF signaling in colorectal cancer.

7.
Cancer Res ; 70(2): 824-31, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20068165

RESUMO

Prostaglandin E(2) (PGE(2)), one of the downstream products of cyclooxygenase-2 enzymatic activity, promotes colorectal carcinogenesis in part by stimulating cell division. In this study, we define a critical mechanism in this process by showing that the prometastatic adapter protein human enhancer of filamentation 1 (HEF1; NEDD9) links PGE(2) to the cell cycle machinery in colorectal cancer cells. PGE(2) rapidly induced expression of HEF1 mRNA and protein in colorectal cancer cells. HEF1 overexpression elicited the same effects as PGE(2) treatment on cell proliferation, cell cycle progression, and tumor growth. Conversely, HEF1 knockdown suppressed PGE(2)-driven cell proliferation and cell cycle progression. Cell cycle alterations involved HEF1 fragmentation as well as co-distribution of HEF1 and cell cycle kinase Aurora A along spindle asters during cell division. Moreover, Aurora A co-immunoprecipitated with HEF1 and was activated by HEF1. Consistent with a role for HEF1 in colorectal carcinogenesis, we found elevated expression of HEF1 expression in 50% of human colorectal cancers examined, relative to paired normal tissues. These findings establish that PGE(2) induces HEF1 expression, which in turn promotes cell cycle progression through its interaction with and activation of Aurora A. Further, they establish that HEF1 is a crucial downstream mediator of PGE(2) action during colorectal carcinogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Dinoprostona/farmacologia , Fosfoproteínas/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Aurora Quinase A , Aurora Quinases , Ciclo Celular/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Humanos , Camundongos , Camundongos Nus , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
8.
Cancer Res ; 70(10): 4054-63, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20442290

RESUMO

Human enhancer of filamentation 1 (HEF1; also known as NEDD9 or Cas-L) is a scaffolding protein that is implicated in regulating diverse cellular processes, such as cellular attachment, motility, cell cycle progression, apoptosis, and inflammation. Here, we identify HEF1 as a novel hypoxia-inducible factor-1alpha (HIF-1alpha)-regulated gene and reveal that HEF1 mediates hypoxia-induced migration of colorectal carcinoma cells. HEF1 is highly expressed in cultured colorectal carcinoma cells exposed to hypoxia and in the hypoxic areas of human colorectal cancer (CRC) specimens. Moreover, our data show that HIF-1alpha mediates the effects of hypoxia on induction of HEF1 expression via binding to a hypoxia-responsive element of the HEF1 promoter. Importantly, the induction of HEF1 expression significantly enhances hypoxia-stimulated HIF-1alpha transcriptional activity by modulating the interaction between HIF-1alpha and its transcriptional cofactor p300. Inhibition of HEF1 expression also reduced the levels of hypoxia-inducible genes, including those that regulate cell motility. Cell migration was reduced dramatically following knockdown of HEF1 expression under hypoxic conditions. Thus, this positive feedback loop may contribute to adaptive responses of carcinoma cells encountering hypoxia during cancer progression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Movimento Celular , Neoplasias Colorretais/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Fosfoproteínas/fisiologia , Western Blotting , Proliferação de Células , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Imunofluorescência , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Imunoprecipitação , Luciferases/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequências Reguladoras de Ácido Nucleico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
9.
J Immunol ; 179(3): 1926-33, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17641059

RESUMO

MAPK kinase 4 (MKK4) is a dual-specificity kinase that activates both JNK and p38 MAPK. However, the mechanism by which MKK4 regulates TNF-induced apoptosis is not fully understood. Therefore, we used fibroblasts derived from MKK4 gene-deleted (MKK4-KO) mice to determine the role of this kinase in TNF signaling. We found that when compared with the wild-type cells, deletion of MKK4 gene enhanced TNF-induced apoptosis, and this correlated with down-regulation of TNF-induced cell-proliferative (COX-2 and cyclin D1) and antiapoptotic (survivin, IAP1, XIAP, Bcl-2, Bcl-x(L), and cFLIP) gene products, all regulated by NF-kappaB. Indeed we found that TNF-induced NF-kappaB activation was abrogated in MKK4 gene-deleted cells, as determined by DNA binding. Further investigation revealed that TNF-induced I kappaB alpha kinase activation, I kappaB alpha phosphorylation, I kappaB alpha degradation, and p65 nuclear translocation were all suppressed in MKK4-KO cells. NF-kappaB reporter assay revealed that NF-kappaB activation induced by TNF, TNFR1, TRADD, TRAF2, NIK, and I kappaB alpha kinase was modulated in gene-deleted cells. Overall, our results indicate that MKK4 plays a central role in TNF-induced apoptosis through the regulation of NF-kappaB-regulated gene products.


Assuntos
Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Apoptose/imunologia , Regulação para Baixo/imunologia , Deleção de Genes , Marcação de Genes , MAP Quinase Quinase 4/genética , NF-kappa B/antagonistas & inibidores , Fator de Necrose Tumoral alfa/fisiologia , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/biossíntese , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular , Ciclina D1/biossíntese , Ciclina D1/genética , Ciclo-Oxigenase 2/biossíntese , Ciclo-Oxigenase 2/genética , Regulação para Baixo/genética , Fibroblastos/citologia , Fibroblastos/enzimologia , Fibroblastos/imunologia , MAP Quinase Quinase 4/deficiência , MAP Quinase Quinase 4/fisiologia , Metaloproteinase 9 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , NF-kappa B/fisiologia , Receptores Tipo I de Fatores de Necrose Tumoral/biossíntese , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/biossíntese , Receptores Tipo II do Fator de Necrose Tumoral/genética
10.
J Biol Chem ; 282(6): 3507-19, 2007 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-17158870

RESUMO

Mitogen-activated protein kinase kinase-4 (MKK4/SEK1) cooperates with phosphatidylinositol 3-kinase to maintain the survival of non-small cell lung cancer (NSCLC) cells, but the biochemical basis of this phenomenon has not been elucidated. Here we used genetic approaches to modulate MKK4 expression in mouse embryo fibroblasts (MEF cells) and NSCLC cells to identify prosurvival signals downstream of MKK4. Relative to wild-type MEF cells, MKK4-null MEF cells were highly susceptible to apoptosis by LY294002, paclitaxel, or serum starvation. MKK4 promoted the survival of MEF cells by decreasing the expression of phosphatase and tensin homologue deleted from chromosome 10 (PTEN). MKK4 inhibited PTEN transcription by activating NFkappaB, a transcriptional suppressor of PTEN. MKK4 was required for nuclear translocation of RelA/p65 and processing of the NFkappaB2 precursor (p100) into the mature form (p52). Studies on a panel of NSCLC cell lines revealed a subset with high MKK4/high NFkappaB/low PTEN that was relatively resistant to apoptosis. Thus, MKK4 promotes cell survival by activating phosphatidylinositol 3-kinase through an NFkappaB/PTEN-dependent pathway.


Assuntos
MAP Quinase Quinase 4/fisiologia , NF-kappa B/fisiologia , PTEN Fosfo-Hidrolase/antagonistas & inibidores , PTEN Fosfo-Hidrolase/biossíntese , Transdução de Sinais/fisiologia , Animais , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/fisiologia , Embrião de Mamíferos/citologia , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MAP Quinase Quinase 4/deficiência , MAP Quinase Quinase 4/genética , Camundongos , Mutagênese Sítio-Dirigida , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Transdução de Sinais/genética
11.
J Biol Chem ; 278(26): 23630-8, 2003 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-12714585

RESUMO

Cancer cells in which the PTEN lipid phosphatase gene is deleted have constitutively activated phosphatidylinositol 3-kinase (PI3K)-dependent signaling and require activation of this pathway for survival. In non-small cell lung cancer (NSCLC) cells, PI3K-dependent signaling is typically activated through mechanisms other than PTEN gene loss. The role of PI3K in the survival of cancer cells that express wild-type PTEN has not been defined. Here we provide evidence that H1299 NSCLC cells, which express wild-type PTEN, underwent proliferative arrest following treatment with an inhibitor of all isoforms of class I PI3K catalytic activity (LY294002) or overexpression of the PTEN lipid phosphatase. In contrast, overexpression of a dominant-negative mutant of the p85alpha regulatory subunit of PI3K (Deltap85) induced apoptosis. Whereas PTEN and Delta85 both inhibited activation of AKT/protein kinase B, only Deltap85 inhibited c-Jun NH2-terminal kinase (JNK) activity. Cotransfection of the constitutively active mutant Rac-1 (Val12), an upstream activator of JNK, abrogated Deltap85-induced lung cancer cell death, whereas constitutively active mutant mitogen-activated protein kinase kinase (MKK)-1 (R4F) did not. Furthermore, LY294002 induced apoptosis of MKK4-null but not wild-type mouse embryo fibroblasts. Therefore, we propose that, in the setting of wild-type PTEN, PI3K- and MKK4/JNK-dependent pathways cooperate to maintain cell survival.


Assuntos
Neoplasias Pulmonares/patologia , MAP Quinase Quinase 4 , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose , Sobrevivência Celular , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , Neoplasias Pulmonares/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/fisiologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Mutação , PTEN Fosfo-Hidrolase , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/fisiologia , Monoéster Fosfórico Hidrolases , Transdução de Sinais , Transfecção , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA