RESUMO
Immunoregulatory B cells impede antitumor immunity through unknown features and mechanisms. We report the existence of leucine-tRNA-synthase-2 (LARS2)-expressing B cell (LARS B) subset with a transforming growth factor-ß1 (TGF-ß1)-dominant regulatory feature in both mouse and human progressive colorectal cancer (CRC). Of note, LARS B cells exhibited a leucine nutrient preference and displayed active mitochondrial aminoacyl-tRNA biosynthesis. They were located outside the tertiary lymphoid structure and correlated with colorectal hyperplasia and shortened survival in CRC patients. A leucine diet induced LARS B cell generation, whereas LARS B cell deletion by Lars2 gene ablation or leucine blockage repressed CRC immunoevasion. Mechanistically, LARS2 programmed mitochondrial nicotinamide adenine dinucleotide (NAD+) regeneration and oxidative metabolism, thus determining the regulatory feature of LARS B cells in which the NAD-dependent protein deacetylase sirtuin-1 (SIRT1) was involved. We propose a leucine-dieting scheme to inhibit LARS B cells, which is safe and useful for CRC therapy.
Assuntos
Aminoacil-tRNA Sintetases , Neoplasias Colorretais , Animais , Humanos , Leucina , Camundongos , Mitocôndrias/metabolismo , NAD/metabolismo , RNA de TransferênciaRESUMO
The human brain is organized as segregation and integration units and follows complex developmental trajectories throughout life. The cortical manifold provides a new means of studying the brain's organization in a multidimensional connectivity gradient space. However, how the brain's morphometric organization changes across the human lifespan remains unclear. Here, leveraging structural magnetic resonance imaging scans from 1,790 healthy individuals aged 8 to 89 years, we investigated age-related global, within- and between-network dispersions to reveal the segregation and integration of brain networks from 3D manifolds based on morphometric similarity network (MSN), combining multiple features conceptualized as a "fingerprint" of an individual's brain. Developmental trajectories of global dispersion unfolded along patterns of molecular brain organization, such as acetylcholine receptor. Communities were increasingly dispersed with age, reflecting more disassortative morphometric similarity profiles within a community. Increasing within-network dispersion of primary motor and association cortices mediated the influence of age on the cognitive flexibility of executive functions. We also found that the secondary sensory cortices were decreasingly dispersed with the rest of the cortices during aging, possibly indicating a shift of secondary sensory cortices across the human lifespan from an extreme to a more central position in 3D manifolds. Together, our results reveal the age-related segregation and integration of MSN from the perspective of a multidimensional gradient space, providing new insights into lifespan changes in multiple morphometric features of the brain, as well as the influence of such changes on cognitive performance.
Assuntos
Envelhecimento , Encéfalo , Cognição , Longevidade , Imageamento por Ressonância Magnética , Humanos , Adulto , Idoso , Cognição/fisiologia , Adolescente , Pessoa de Meia-Idade , Masculino , Imageamento por Ressonância Magnética/métodos , Feminino , Idoso de 80 Anos ou mais , Criança , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Encéfalo/crescimento & desenvolvimento , Adulto Jovem , Longevidade/fisiologia , Envelhecimento/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Função Executiva/fisiologiaRESUMO
Individuals with depression have the highest lifetime prevalence of suicide attempts (SA) among mental illnesses. Numerous neuroimaging studies have developed biomarkers from task-related neural activation in depressive patients with SA, but the findings are inconsistent. Empowered by the contemporary interconnected view of depression as a neural system disorder, we sought to identify a specific brain circuit utilizing published heterogeneous neural activations. We systematically reviewed all published cognitive and emotional task-related functional MRI studies that investigated differences in the location of neural activations between depressive patients with and without SA. We subsequently mapped an underlying brain circuit functionally connecting to each experimental activation using a large normative connectome database (n = 1000). The identified SA-related functional network was compared to the network derived from the disease control group. Finally, we decoded this convergent functional connectivity network using microscale transcriptomic and chemo-architectures, and macroscale psychological processes. We enrolled 11 experimental tasks from eight studies, including depressive patients with SA (n = 147) and without SA (n = 196). The heterogeneous SA-related neural activations localized to the somato-cognitive action network (SCAN), exhibiting robustness to little perturbations and specificity for depression. Furthermore, the SA-related functional network was colocalized with brain-wide gene expression involved in inflammatory and immunity-related biological processes and aligned with the distribution of the GABA and noradrenaline neurotransmitter systems. The findings demonstrate that the SA-related functional network of depression is predominantly located at the SCAN, which is an essential implication for understanding depressive patients with SA.
Assuntos
Encéfalo , Cognição , Conectoma , Depressão , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Conectoma/métodos , Depressão/fisiopatologia , Encéfalo/fisiopatologia , Encéfalo/metabolismo , Cognição/fisiologia , Feminino , Masculino , Adulto , Tentativa de Suicídio/psicologia , Rede Nervosa/fisiopatologia , Rede Nervosa/metabolismo , Rede Nervosa/diagnóstico por imagem , Ideação Suicida , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/metabolismo , Vias Neurais/fisiopatologia , Mapeamento Encefálico/métodosRESUMO
The serine protease CORIN catalyzes pro-atrial natriuretic peptide (pro-ANP) into an active ANP and maintains homeostasis of the internal environment. However, it is unclear whether CORIN participates in the regulation of tumor progression. We analyzed the expression profile of CORIN in gastric cancer tissues (GCs) and adjacent nontumoral tissues (NTs). We investigated the prognostic value of CORIN in GC patients. We characterized the in vitro and in vivo activity of CORIN in cultured GC cells with gain-of-function and loss-of-function experiments. The underlying mechanism was explored by using bioinformatics, a signaling antibody array, and confirmative western blot analyses, as well as rescue experiments with highly selective small-molecule inhibitors targeting the ERK1/2 MAPK signaling pathway. CORIN was upregulated in GCs than in NTs. Overexpression of CORIN was correlated with unfavorable prognoses in patients with GC. Ectopic expression of CORIN was promoted, whereas silencing of CORIN suppressed proliferation, colony formation, migration and invasion of GC cells, and tumor growth in vivo. Overexpression of CORIN-induced epithelial-mesenchymal transition (EMT) and activation of the ERK1/2 MAPK signaling pathway, while silencing of CORIN yielded opposite results. The in vitro tumor-promoting potency of CORIN could be antagonized by selective inhibitors targeting the ERK1/2 MAPK pathway. In conclusion, CORIN is a potential prognostic marker and therapeutic target for GC patients, which may promote tumor progression by mediating the ERK1/2 MAPK signaling pathway and EMT in GC cells.
Assuntos
Proliferação de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Serina Endopeptidases , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Animais , Camundongos , Feminino , Masculino , Prognóstico , Linhagem Celular Tumoral , Movimento Celular , Pessoa de Meia-Idade , Camundongos Nus , Camundongos Endogâmicos BALB C , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genéticaRESUMO
BACKGROUND AND AIMS: IL-10-producing regulatory B cells (IL-10 + B cells), a dominant regulatory B cell (Breg) subset, foster tumor progression. However, the mechanisms underlying their generation in HCC are poorly understood. Ten-eleven translocation-2 (TET2), a predominant epigenetic regulatory enzyme in B cells, regulates gene expression by catalyzing demethylation of 5-methylcytosine into 5-hydroxymethyl cytosine (5hmC). In this study, we investigated the role of TET2 in IL-10 + B cell generation in HCC and its prospects for clinical application. APPROACH AND RESULTS: TET2 activation in B cells triggered by oxidative stress from the HCC microenvironment promoted IL-10 expression, whereas adoptive transfer of Tet2 -deficient B cells suppressed HCC progression. The aryl hydrocarbon receptor is required for TET2 to hydroxylate Il10 . In addition, high levels of IL-10, TET2, and 5hmc in B cells indicate poor prognosis in patients with HCC. Moreover, we determined TET2 activity using 5hmc in B cells to evaluate the efficacy of anti-programmed death 1 (anti-PD-1) therapy. Notably, TET2 inhibition in B cells facilitates antitumor immunity to improve anti-PD-1 therapy for HCC. CONCLUSIONS: Our findings propose a TET2-dependent epigenetic intervention targeting IL-10 + B cell generation during HCC progression and identify the inhibition of TET2 activity as a promising combination therapy with immune checkpoint inhibitors for HCC.
Assuntos
Linfócitos B Reguladores , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , 5-Metilcitosina , Linfócitos B Reguladores/metabolismo , Linfócitos B Reguladores/patologia , Carcinoma Hepatocelular/patologia , Interleucina-10 , Neoplasias Hepáticas/patologia , Microambiente TumoralRESUMO
OBJECTIVE: To retrospectively explore the clinical significance of radiotherapy to the distant metastatic lymph nodes (cervical/ clavicular/ mediastinal et al.) in metastatic cervical cancer. Hereinto, these cervicothoracic lymph nodes were metastasized from IB1-IVA (initial stage at first treatment), and IVB initially had metastatic disease in these areas at diagnosis. METHODS: Metastatic cervical cancer only with the distant cervicothoracic metastatic lymph nodes (cervical/ clavicular/ mediastinal et al.), without distant parenchymal organs metastasis such as lung, liver, bone, and peritoneum, were enrolled in the analysis. These patients were classified into IB1-IVA and IVB based on their initial stage of first treatment. All patients received IMRT for the distant metastatic lymph nodes. The progression-free survival (PFS) and overall survival (OS) were analyzed using the Kaplan-Meier method. RESULTS: Overall, the median PFS was 9 months, and the median OS was 27 months. The subgroup analysis showed that for IB1-IVA, the median PFS was 11 months, and the median OS was 30.5 months. For IVB, the median PFS was 8 months, and the median OS was 16 months. CONCLUSION: Radiotherapy is beneficial to the distant metastatic lymph nodes (cervical/ clavicular/ mediastinal et al.), and could effectively bring the longer PFS and OS for metastatic cervical cancer.
Assuntos
Linfonodos , Metástase Linfática , Radioterapia de Intensidade Modulada , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/radioterapia , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/mortalidade , Radioterapia de Intensidade Modulada/métodos , Metástase Linfática/radioterapia , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto , Linfonodos/patologia , Idoso , Estadiamento de Neoplasias , Relevância ClínicaRESUMO
BACKGROUND: Previous studies have suggested that the habenula (Hb) may be involved in the mechanism of obsessive-compulsive disorder (OCD). However, the specific role of Hb in OCD remains unclear. This study aimed to explore the structural and functional abnormalities of Hb in OCD and their relationship with the clinical symptoms. METHODS: Eighty patients with OCD and 85 healthy controls (HCs) were recruited as the primary dataset. The grey matter volume, resting-state functional connectivity (FC), and effective connectivity (EC) of the Hb were calculated and compared between OCD group and HCs. An independent replication dataset was used to verify the stability and robustness of the results. RESULTS: Patients with OCD exhibited smaller Hb volume and increased FC of right Hb-left hippocampus than HCs. Dynamic causal model revealed an increased EC from left hippocampus to right Hb and a less inhibitory causal influence from the right Hb to left hippocampus in the OCD group compared to HCs. Similar results were found in the replication dataset. CONCLUSIONS: This study suggested that abnormal structure of Hb and hippocampus-Hb connectivity may contribute to the pathological basis of OCD.
Assuntos
Habenula , Hipocampo , Imageamento por Ressonância Magnética , Transtorno Obsessivo-Compulsivo , Humanos , Habenula/fisiopatologia , Habenula/diagnóstico por imagem , Transtorno Obsessivo-Compulsivo/fisiopatologia , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Masculino , Feminino , Adulto , Hipocampo/fisiopatologia , Hipocampo/diagnóstico por imagem , Adulto Jovem , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Substância Cinzenta/fisiopatologia , Estudos de Casos e ControlesRESUMO
Resistance to oxaliplatin (OXA) is a major cause of recurrence in gastric cancer (GC) patients. Autophagy is an important factor ensuring the survival of cancer cells under chemotherapeutic stress. We aimed to investigate the role of OXA-related genes in autophagy and chemoresistance of gastric cancer cells. We established OXA-resistant gastric cancer cells and used RNA-seq to profile gene expression within OXA-resistant GC and corresponding parental cells. Immunohistochemistry and RT-qPCR was performed to detect gene expression in tissues of two cohorts of GC patients who received OXA-based chemotherapy. The chemoresistant effects of the gene were assessed by cell viability, apoptosis, and autophagy assays. The effects of the gene on autophagy were assessed with mRFP-GFP-LC3 and Western blotting (WB). Gene set enrichment analysis (GSEA) and WB were performed to detect the activity of PI3K/AKT/mTOR signaling under the regulation of the gene. The OXA-resistant property of GC cells is related to their enhanced autophagic activity. Based on RNA-seq profiling, ANXA1 was selected as a candidate, as it was upregulated significantly in OXA-resistant cells. Furthermore, we found that higher ANXA1 expression before chemotherapy was associated with subsequent development of resistance to oxaliplatin, and overexpression of ANXA1 promoted the resistance of gastric cancer cells to oxaliplatin. So, it may serve as a key regulator in GC chemo-resistance knockdown of ANXA1, via inhibiting autophagy, enhancing the sensitivity of OXA-resistant GC cells to OXA in vitro and in vivo. Mechanically, we identified that PI3K/AKT/mTOR signaling pathway was activated in the ANXA1 stable knockdown AGS/OXA cells, which leads to the suppression of autophagy. ANXA1 functions as a chemoresistant gene in GC cells by targeting the PI3K/AKT/mTOR signaling pathway and might be a prognostic predictor for GC patients who receive OXA-based chemotherapy.
Assuntos
Anexina A1 , Neoplasias Gástricas , Humanos , Anexina A1/metabolismo , Autofagia/genética , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismoRESUMO
Toxoplasma gondii is among the most important parasites worldwide. The apicoplast is a unique organelle shared by all Apicomplexan protozoa. Increasing lines of evidence suggest that the apicoplast possesses its own ubiquitination system. Deubiquitination is a crucial step executed by deubiquitinase (DUB) during protein ubiquitination. While multiple components of ubiquitination have been identified in T. gondii, the deubiquitinases involved remain unknown. The aim of the current study was to delineate the localization of TgOTU7 and elucidate its functions. TgOTU7 was specifically localized at the apicoplast, and its expression was largely regulated during the cell cycle. Additionally, TgOTU7 efficiently breaks down ubiquitin chains, exhibits linkage-nonspecific deubiquitinating activity and is critical for the lytic cycle and apicoplast biogenesis, similar to the transcription of the apicoplast genome and the nuclear genes encoding apicoplast-targeted proteins. Taken together, the results indicate that the newly described deubiquitinase TgOTU7 specifically localizes to the apicoplast and affects the cell growth and apicoplast homeostasis of T. gondii.
Assuntos
Apicoplastos , Toxoplasma , Animais , Toxoplasma/genética , Apicoplastos/genética , Apicoplastos/metabolismo , Ciclo Celular , Homeostase , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismoRESUMO
Discovery of small-molecule antibiotics with novel chemotypes serves as one of the essential strategies to address antibiotic resistance. Although a considerable number of computational tools committed to molecular design have been reported, there is a deficit in holistic and efficient tools specifically developed for small-molecule antibiotic discovery. To address this issue, we report AutoMolDesigner, a computational modeling software dedicated to small-molecule antibiotic design. It is a generalized framework comprising two functional modules, i.e., generative-deep-learning-enabled molecular generation and automated machine-learning-based antibacterial activity/property prediction, wherein individually trained models and curated datasets are out-of-the-box for whole-cell-based antibiotic screening and design. It is open-source, thus allowing for the incorporation of new features for flexible use. Unlike most software programs based on Linux and command lines, this application equipped with a Qt-based graphical user interface can be run on personal computers with multiple operating systems, making it much easier to use for experimental scientists. The software and related materials are freely available at GitHub (https://github.com/taoshen99/AutoMolDesigner) and Zenodo (https://zenodo.org/record/10097899).
Assuntos
Inteligência Artificial , Software , Simulação por ComputadorRESUMO
This study explored the distribution characteristics of CYP2C19 gene polymorphism among Hmong and Dong patients in the Qiandongnan region of Guizhou province after percutaneous coronary intervention (PCI). The aim was to assess the clinical impact of individualized clopidogrel administration based on CYP2C19 genotypes. A total of 208 patients were classified into ultra-fast, fast, intermediate, and slow metabolic groups. They were randomly assigned to clopidogrel individualized administration (IA) or conventional treatment (CA) groups. Patients were followed for 6 months to evaluate major adverse cardiovascular events (MACE) and adverse reactions. The CYP2C19 genotype distribution was in Hardy-Weinberg equilibrium, showing consistency in the population. While no significant ethnic differences were found in genotype and metabolic distribution, allele distribution varied, with Hmong patients exhibiting a higher proportion of CYP2C19*1 alleles than Dong patients. Following individualized administration, the IA group demonstrated lower incidences of non-fatal myocardial infarction and emergency revascularization compared to the CA group. Bleeding events were higher in the IA group, but the total MACE incidence was lower. No statistical difference in MACE and adverse drug reactions (ADR) was observed in the CA group across metabolic types, but MACE incidence was higher in intermediate and slow metabolic groups. In the IA group, no significant difference in MACE was noted among metabolic types, but ADR incidence varied significantly, particularly in dyspnea. The study highlighted significant CYP2C19 allele distribution differences between Hmong and Dong patients post-PCI in Qiandongnan. Patients with slow metabolic profiles demonstrated higher MACE incidence with conventional clopidogrel dosage, whereas CYP2C19-guided therapy reduced MACE without increasing bleeding risk. These findings supported clinical individualized clopidogrel administration in post-PCI patients in the Qiandongnan region, contributing to rational clopidogrel use.
Assuntos
Clopidogrel , Citocromo P-450 CYP2C19 , Intervenção Coronária Percutânea , Polimorfismo Genético , Humanos , Citocromo P-450 CYP2C19/genética , Clopidogrel/uso terapêutico , Clopidogrel/efeitos adversos , Clopidogrel/administração & dosagem , Masculino , Feminino , Pessoa de Meia-Idade , Prognóstico , Idoso , Inibidores da Agregação Plaquetária/uso terapêutico , Inibidores da Agregação Plaquetária/efeitos adversos , Genótipo , Alelos , Medicina de Precisão/métodos , Hemorragia/genéticaRESUMO
The identification of novel 4-hydroxy-2-quinolone-3-carboxamide antibacterials with improved properties is of great value for the control of antibiotic resistance. In this study, a series of N-heteroaryl-substituted 4-hydroxy-2-quinolone-3-carboxamides were developed using the bioisosteric replacement strategy. As a result of our research, we discovered the two most potent GyrB inhibitors (WBX7 and WBX18), with IC50 values of 0.816 µM and 0.137 µM, respectively. Additional antibacterial activity screening indicated that WBX18 possesses the best antibacterial activity against MRSA, VISA, and VRE strains, with MIC values rangingbetween0.5and 2 µg/mL, which was 2 to over 32 times more potent than that of vancomycin. In vitro safety and metabolic stability, as well as in vivo pharmacokinetics assessments revealed that WBX18 is non-toxic to HUVEC and HepG2, metabolically stable in plasma and liver microsomes (mouse), and displays favorable in vivo pharmacokinetic properties. Finally, docking studies combined with molecular dynamic simulation showed that WBX18 could stably fit in the active site cavity of GyrB.
Assuntos
Antibacterianos , DNA Girase , Testes de Sensibilidade Microbiana , Inibidores da Topoisomerase II , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Humanos , DNA Girase/metabolismo , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/síntese química , Relação Estrutura-Atividade , Animais , Estrutura Molecular , Relação Dose-Resposta a Droga , Camundongos , Células Hep G2 , Simulação de Acoplamento Molecular , Microssomos Hepáticos/metabolismo , Microssomos Hepáticos/químicaRESUMO
White matter (WM) makes up half of the human brain. Compelling functional MRI evidence indicates that white matter exhibits neural activation and synchronization via a hemodynamic window. However, the neurometabolic underpinnings of white matter temporal synchronization and spatial topology remain unknown. By leveraging concurrent [18F]FDG-fPET and blood-oxygenation-level-dependent-fMRI, we demonstrated the temporal and spatial correspondences between blood oxygenation and glucose metabolism in the human brain white matter. In the temporal scale, we found that blood-oxygenation-level-dependent signals shared mutual information with FDG signals in the default-mode, visual, and sensorimotor-auditory networks. For spatial distribution, the blood-oxygenation-level-dependent functional networks in white matter were accompanied by substantial correspondence of FDG functional connectivity at different topological scales, including degree centrality and global gradients. Furthermore, the content of blood-oxygenation-level-dependent fluctuations in the white matter default-mode network was aligned and liberal with the FDG graph, suggesting the freedom of default-mode network neuro-dynamics, but the constraint by metabolic dynamics. Moreover, the dissociation of the functional gradient between blood-oxygenation-level-dependent and FDG connectivity specific to the white matter default-mode network revealed functional heterogeneities. Together, the results showed that brain energy metabolism was closely coupled with blood oxygenation in white matter. Comprehensive and complementary information from fMRI and fPET might therefore help decode brain white matter functions.
Assuntos
Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo , Imageamento por Ressonância Magnética/métodos , Fluordesoxiglucose F18/metabolismo , Encéfalo , Mapeamento Encefálico/métodos , Glucose/metabolismoRESUMO
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is implicated in accumulation of amyloid ß-protein (Aß) and phosphorylation of Tau proteins, and thus represents an important therapeutic target for neurodegenerative diseases. Though many DYRK1A inhibitors have been discovered, there is still no marketed drug targeting DYRK1A. This is partly due to the lack of effective and safe chemotypes. Therefore, it is still necessary to identify new classes of DYRK1A inhibitors. By performing virtual screening with the workflow mainly composed of pharmacophore modeling and molecular docking as well as the following DYRK1A inhibition assay, we identified compound L9, ((Z)-1-(((5-phenyl-1H-pyrazol-4-yl)methylene)-amino)-1H-tetrazol-5-amine), as a moderately active DYRK1A inhibitor (IC50: 1.67 µM). This compound was structurally different from the known DYRK1A inhibitors, showed a unique binding mode to DYRK1A. Furthermore, compound L9 showed neuroprotective activity against okadaic acid (OA)-induced injury in the human neuroblastoma cell line SH-SY5Y by regulating the expression of Aß and phosphorylation of Tau protein. This compound was neither toxic to the SH-SY5Y cells nor to the human normal liver cell line HL-7702 (IC50: >100 µM). In conclusion, we have identified a novel DYRK1A inhibitor with neuroprotective activity through virtual screening and in vitro biological evaluation, which holds the promise for further study.
RESUMO
Artificial light at night (ALAN) pollution has been regarded as a global environmental concern. More than 80% of the global population is exposed to light pollution. Exacerbating this issue, artificially lit outdoor areas are growing by 2.2% per year, while continuously lit areas have brightened by 2.2% each year due to rapid population growth and expanding urbanization. Furthermore, the increasing prevalence of night shift work and smart device usage contributes to the inescapable influence of ALAN. Studies have shown that ALAN can disrupt endogenous biological clocks, resulting in a disturbance of the circadian rhythm, which ultimately affects various physiological functions. Up until now, scholars have studied various disease mechanisms caused by ALAN that may be related to the response of the circadian system to light. This review outlines the molecular mechanisms by which ALAN causes circadian rhythm abnormalities in sleep disorders, endocrine diseases, cardiovascular disease, cancer, immune impairment, depression, anxiety and cognitive impairments.
Assuntos
Poluição Luminosa , Jornada de Trabalho em Turnos , Iluminação/efeitos adversos , Ritmo Circadiano/fisiologia , Poluição AmbientalRESUMO
BACKGROUND: TMPRSS2-ERG (T2E) fusion is highly related to aggressive clinical features in prostate cancer (PC), which guides individual therapy. However, current fusion prediction tools lacked enough accuracy and biomarkers were unable to be applied to individuals across different platforms due to their quantitative nature. This study aims to identify a transcriptome signature to detect the T2E fusion status of PC at the individual level. METHODS: Based on 272 high-throughput mRNA expression profiles from the Sboner dataset, we developed a rank-based algorithm to identify a qualitative signature to detect T2E fusion in PC. The signature was validated in 1223 samples from three external datasets (Setlur, Clarissa, and TCGA). RESULTS: A signature, composed of five mRNAs coupled to ERG (five ERG-mRNA pairs, 5-ERG-mRPs), was developed to distinguish T2E fusion status in PC. 5-ERG-mRPs reached 84.56% accuracy in Sboner dataset, which was verified in Setlur dataset (n = 455, accuracy = 82.20%) and Clarissa dataset (n = 118, accuracy = 81.36%). Besides, for 495 samples from TCGA, two subtypes classified by 5-ERG-mRPs showed a higher level of significance in various T2E fusion features than subtypes obtained through current fusion prediction tools, such as STAR-Fusion. CONCLUSIONS: Overall, 5-ERG-mRPs can robustly detect T2E fusion in PC at the individual level, which can be used on any gene measurement platform without specific normalization procedures. Hence, 5-ERG-mRPs may serve as an auxiliary tool for PC patient management.
Assuntos
Neoplasias da Próstata , Transcriptoma , Masculino , Humanos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Fusão Oncogênica/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , RNA Mensageiro/genética , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Serina Endopeptidases/uso terapêuticoRESUMO
Objective: To establish and determine the content of the genotoxic impurity piperidine in the active pharmaceutical ingredient (API) of rimonabant using a liquid chromatography-mass spectrometry (LC-MS) method. This study underscores the importance of detecting piperidine due to its potential health risks, including carcinogenic and mutagenic effects, thus highlighting the critical need for rigorous quality control in pharmaceutical products. Methods: An Atlantis C18 column (5 µm, 3.9×100 mm) was chosen for separation due to its high efficiency and selectivity for piperidine, with a gradient elution of 0.05% formic acid-water (A) and methanol (B) as the mobile phase at a flow rate of 1.0 mL/min. The column temperature was optimized at 30°C to ensure peak resolution and sensitivity, the injection volume was set to 5.0 µL to minimize sample consumption while maintaining detectability, and the analysis time was kept at 7 min for efficient throughput. Results: Piperidine demonstrated excellent linearity in the concentration range of 0.03-0.40 µg/mL (R>0.99), with a detection limit of 0.01010 µg/mL. This detection limit is significantly lower than regulatory thresholds, indicating the method's high sensitivity compared to existing methods and its adequacy for regulatory compliance in pharmaceutical quality control. Conclusion: This LC-MS method not only demonstrated high accuracy, good repeatability, and strong durability but also sets a benchmark for future research, regulatory practices, and pharmaceutical quality control. By accurately detecting low levels of genotoxic impurities like piperidine, this method supports the development of safer drug formulations and underscores the importance of stringent quality control measures in the pharmaceutical industry.
RESUMO
BACKGROUND: Psoriasis is characterized by inflammation and hyperproliferation of epidermal keratinocytes. Cycloastragenol (CAG) is an active molecule of Astragalus membranaceus that potentially plays a repressive role in psoriasis. Activated cell autophagy is an effective pathway for alleviating psoriasis progression. Thus, we investigated the role of CAG in the proliferation and autophagy of interleukin (IL)-22-stimulated keratinocytes. METHODS: A psoriasis model was established by stimulating HaCaT cells with IL-22. Gene or protein expression levels were measured by qRT-PCR or western blot. Autophagy flux was observed with mRFP-GFP-LC3 adenovirus transfection assay under confocal microscopy. Stanniocalcin-1 (STC1) secretion levels were determined using ELISA kits. The apoptosis rate was assessed using flow cytometry. Interactions between miR-145 and STC1 or STC1 and Notch1 were validated by luciferase reporter gene assays, RIP, and Co-IP assays. RESULTS: CAG repressed cell proliferation and promoted apoptosis and autophagy in IL-22-stimulated HaCaT cells. Additionally, CAG promoted autophagy by enhancing miR-145. STC1 silencing ameliorated autophagy repression in IL-22-treated HaCaT cells. Moreover, miR-145 negatively regulated STC1, and STC1 was found to activate Notch1. Lastly, STC1 overexpression reversed CAG-promoted autophagy. CONCLUSION: CAG alleviated keratinocyte hyperproliferation through autophagy enhancement via regulating the miR-145/STC1/Notch1 axis in psoriasis.
Assuntos
Glicoproteínas , MicroRNAs , Psoríase , Sapogeninas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Queratinócitos/metabolismo , Psoríase/tratamento farmacológico , Psoríase/genética , Proliferação de Células/genéticaRESUMO
Synchronous monitoring electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) have received significant attention in brain science research for their provision of more information on neuro-loop interactions. There is a need for an integrated hybrid EEG-fNIRS patch to synchronously monitor surface EEG and deep brain fNIRS signals. Here, we developed a hybrid EEG-fNIRS patch capable of acquiring high-quality, co-located EEG and fNIRS signals. This patch is wearable and provides easy cognition and emotion detection, while reducing the spatial interference and signal crosstalk by integration, which leads to high spatial-temporal correspondence and signal quality. The modular design of the EEG-fNIRS acquisition unit and optimized mechanical design enables the patch to obtain EEG and fNIRS signals at the same location and eliminates spatial interference. The EEG pre-amplifier on the electrode side effectively improves the acquisition of weak EEG signals and significantly reduces input noise to 0.9 µVrms, amplitude distortion to less than 2%, and frequency distortion to less than 1%. Detrending, motion correction algorithms, and band-pass filtering were used to remove physiological noise, baseline drift, and motion artifacts from the fNIRS signal. A high fNIRS source switching frequency configuration above 100 Hz improves crosstalk suppression between fNIRS and EEG signals. The Stroop task was carried out to verify its performance; the patch can acquire event-related potentials and hemodynamic information associated with cognition in the prefrontal area.