Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38581416

RESUMO

The inference of gene regulatory networks (GRNs) from gene expression profiles has been a key issue in systems biology, prompting many researchers to develop diverse computational methods. However, most of these methods do not reconstruct directed GRNs with regulatory types because of the lack of benchmark datasets or defects in the computational methods. Here, we collect benchmark datasets and propose a deep learning-based model, DeepFGRN, for reconstructing fine gene regulatory networks (FGRNs) with both regulation types and directions. In addition, the GRNs of real species are always large graphs with direction and high sparsity, which impede the advancement of GRN inference. Therefore, DeepFGRN builds a node bidirectional representation module to capture the directed graph embedding representation of the GRN. Specifically, the source and target generators are designed to learn the low-dimensional dense embedding of the source and target neighbors of a gene, respectively. An adversarial learning strategy is applied to iteratively learn the real neighbors of each gene. In addition, because the expression profiles of genes with regulatory associations are correlative, a correlation analysis module is designed. Specifically, this module not only fully extracts gene expression features, but also captures the correlation between regulators and target genes. Experimental results show that DeepFGRN has a competitive capability for both GRN and FGRN inference. Potential biomarkers and therapeutic drugs for breast cancer, liver cancer, lung cancer and coronavirus disease 2019 are identified based on the candidate FGRNs, providing a possible opportunity to advance our knowledge of disease treatments.


Assuntos
Redes Reguladoras de Genes , Neoplasias Hepáticas , Humanos , Biologia de Sistemas/métodos , Transcriptoma , Algoritmos , Biologia Computacional/métodos
2.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36631401

RESUMO

The advances in single-cell ribonucleic acid sequencing (scRNA-seq) allow researchers to explore cellular heterogeneity and human diseases at cell resolution. Cell clustering is a prerequisite in scRNA-seq analysis since it can recognize cell identities. However, the high dimensionality, noises and significant sparsity of scRNA-seq data have made it a big challenge. Although many methods have emerged, they still fail to fully explore the intrinsic properties of cells and the relationship among cells, which seriously affects the downstream clustering performance. Here, we propose a new deep contrastive clustering algorithm called scDCCA. It integrates a denoising auto-encoder and a dual contrastive learning module into a deep clustering framework to extract valuable features and realize cell clustering. Specifically, to better characterize and learn data representations robustly, scDCCA utilizes a denoising Zero-Inflated Negative Binomial model-based auto-encoder to extract low-dimensional features. Meanwhile, scDCCA incorporates a dual contrastive learning module to capture the pairwise proximity of cells. By increasing the similarities between positive pairs and the differences between negative ones, the contrasts at both the instance and the cluster level help the model learn more discriminative features and achieve better cell segregation. Furthermore, scDCCA joins feature learning with clustering, which realizes representation learning and cell clustering in an end-to-end manner. Experimental results of 14 real datasets validate that scDCCA outperforms eight state-of-the-art methods in terms of accuracy, generalizability, scalability and efficiency. Cell visualization and biological analysis demonstrate that scDCCA significantly improves clustering and facilitates downstream analysis for scRNA-seq data. The code is available at https://github.com/WJ319/scDCCA.


Assuntos
Perfilação da Expressão Gênica , Análise da Expressão Gênica de Célula Única , Humanos , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Algoritmos , Análise por Conglomerados
3.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36611253

RESUMO

Although previous studies have revealed that synonymous mutations contribute to various human diseases, distinguishing deleterious synonymous mutations from benign ones is still a challenge in medical genomics. Recently, computational tools have been introduced to predict the harmfulness of synonymous mutations. However, most of these computational tools rely on balanced training sets without considering abundant negative samples that could result in deficient performance. In this study, we propose a computational model that uses a selective ensemble to predict deleterious synonymous mutations (seDSM). We construct several candidate base classifiers for the ensemble using balanced training subsets randomly sampled from the imbalanced benchmark training sets. The diversity measures of the base classifiers are calculated by the pairwise diversity metrics, and the classifiers with the highest diversities are selected for integration using soft voting for synonymous mutation prediction. We also design two strategies for filling in missing values in the imbalanced dataset and constructing models using different pairwise diversity metrics. The experimental results show that a selective ensemble based on double fault with the ensemble strategy EKNNI for filling in missing values is the most effective scheme. Finally, using 40-dimensional biology features, we propose a novel model based on a selective ensemble for predicting deleterious synonymous mutations (seDSM). seDSM outperformed other state-of-the-art methods on the independent test sets according to multiple evaluation indicators, indicating that it has an outstanding predictive performance for deleterious synonymous mutations. We hope that seDSM will be useful for studying deleterious synonymous mutations and advancing our understanding of synonymous mutations. The source code of seDSM is freely accessible at https://github.com/xialab-ahu/seDSM.git.


Assuntos
Genômica , Mutação Silenciosa , Humanos , Genômica/métodos , Software , Algoritmos
4.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35136924

RESUMO

Rapid development of single-cell RNA sequencing (scRNA-seq) technology has allowed researchers to explore biological phenomena at the cellular scale. Clustering is a crucial and helpful step for researchers to study the heterogeneity of cell. Although many clustering methods have been proposed, massive dropout events and the curse of dimensionality in scRNA-seq data make it still difficult to analysis because they reduce the accuracy of clustering methods, leading to misidentification of cell types. In this work, we propose the scHFC, which is a hybrid fuzzy clustering method optimized by natural computation based on Fuzzy C Mean (FCM) and Gath-Geva (GG) algorithms. Specifically, principal component analysis algorithm is utilized to reduce the dimensions of scRNA-seq data after it is preprocessed. Then, FCM algorithm optimized by simulated annealing algorithm and genetic algorithm is applied to cluster the data to output a membership matrix, which represents the initial clustering result and is taken as the input for GG algorithm to get the final clustering results. We also develop a cluster number estimation method called multi-index comprehensive estimation, which can estimate the cluster numbers well by combining four clustering effectiveness indexes. The performance of the scHFC method is evaluated on 17 scRNA-seq datasets, and compared with six state-of-the-art methods. Experimental results validate the better performance of our scHFC method in terms of clustering accuracy and stability of algorithm. In short, scHFC is an effective method to cluster cells for scRNA-seq data, and it presents great potential for downstream analysis of scRNA-seq data. The source code is available at https://github.com/WJ319/scHFC.


Assuntos
Análise de Célula Única , Software , Algoritmos , Análise por Conglomerados , Perfilação da Expressão Gênica/métodos , RNA-Seq , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
5.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34651655

RESUMO

The bioactive peptide has wide functions, such as lowering blood glucose levels and reducing inflammation. Meanwhile, computational methods such as machine learning are becoming more and more important for peptide functions prediction. Most of the previous studies concentrate on the single-functional bioactive peptides prediction. However, the number of multi-functional peptides is on the increase; therefore, novel computational methods are needed. In this study, we develop a method MLBP (Multi-Label deep learning approach for determining the multi-functionalities of Bioactive Peptides), which can predict multiple functions including anti-cancer, anti-diabetic, anti-hypertensive, anti-inflammatory and anti-microbial simultaneously. MLBP model takes the peptide sequence vector as input to replace the biological and physiochemical features used in other peptides predictors. Using the embedding layer, the dense continuous feature vector is learnt from the sequence vector. Then, we extract convolution features from the feature vector through the convolutional neural network layer and combine with the bidirectional gated recurrent unit layer to improve the prediction performance. The 5-fold cross-validation experiments are conducted on the training dataset, and the results show that Accuracy and Absolute true are 0.695 and 0.685, respectively. On the test dataset, Accuracy and Absolute true of MLBP are 0.709 and 0.697, with 5.0 and 4.7% higher than those of the suboptimum method, respectively. The results indicate MLBP has superior prediction performance on the multi-functional peptides identification. MLBP is available at https://github.com/xialab-ahu/MLBP and http://bioinfo.ahu.edu.cn/MLBP/.


Assuntos
Aprendizado Profundo , Aprendizado de Máquina , Redes Neurais de Computação , Peptídeos
6.
Bioinformatics ; 39(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37216900

RESUMO

MOTIVATION: With the great number of peptide sequences produced in the postgenomic era, it is highly desirable to identify the various functions of therapeutic peptides quickly. Furthermore, it is a great challenge to predict accurate multi-functional therapeutic peptides (MFTP) via sequence-based computational tools. RESULTS: Here, we propose a novel multi-label-based method, named ETFC, to predict 21 categories of therapeutic peptides. The method utilizes a deep learning-based model architecture, which consists of four blocks: embedding, text convolutional neural network, feed-forward network, and classification blocks. This method also adopts an imbalanced learning strategy with a novel multi-label focal dice loss function. multi-label focal dice loss is applied in the ETFC method to solve the inherent imbalance problem in the multi-label dataset and achieve competitive performance. The experimental results state that the ETFC method is significantly better than the existing methods for MFTP prediction. With the established framework, we use the teacher-student-based knowledge distillation to obtain the attention weight from the self-attention mechanism in the MFTP prediction and quantify their contributions toward each of the investigated activities. AVAILABILITY AND IMPLEMENTATION: The source code and dataset are available via: https://github.com/xialab-ahu/ETFC.


Assuntos
Aprendizado Profundo , Humanos , Redes Neurais de Computação , Peptídeos/uso terapêutico , Software
7.
Bioinformatics ; 39(3)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36882183

RESUMO

MOTIVATION: Phage genome annotation plays a key role in the design of phage therapy. To date, there have been various genome annotation tools for phages, but most of these tools focus on mono-functional annotation and have complex operational processes. Accordingly, comprehensive and user-friendly platforms for phage genome annotation are needed. RESULTS: Here, we propose PhaGAA, an online integrated platform for phage genome annotation and analysis. By incorporating several annotation tools, PhaGAA is constructed to annotate the prophage genome at DNA and protein levels and provide the analytical results. Furthermore, PhaGAA could mine and annotate phage genomes from bacterial genome or metagenome. In summary, PhaGAA will be a useful resource for experimental biologists and help advance the phage synthetic biology in basic and application research. AVAILABILITY AND IMPLEMENTATION: PhaGAA is freely available at http://phage.xialab.info/.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Software , Computadores , Metagenoma , Genoma Bacteriano , Anotação de Sequência Molecular
8.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32591774

RESUMO

The discrimination of driver from passenger mutations has been a hot topic in the field of cancer biology. Although recent advances have improved the identification of driver mutations in cancer genomic research, there is no computational method specific for the cancer frameshift indels (insertions or/and deletions) yet. In addition, existing pathogenic frameshift indel predictors may suffer from plenty of missing values because of different choices of transcripts during the variant annotation processes. In this study, we proposed a computational model, called PredCID (Predictor for Cancer driver frameshift InDels), for accurately predicting cancer driver frameshift indels. Gene, DNA, transcript and protein level features are combined together and selected for classification with eXtreme Gradient Boosting classifier. Benchmarking results on the cross-validation dataset and independent dataset showed that PredCID achieves better and robust performance compared with existing noncancer-specific methods in distinguishing cancer driver frameshift indels from passengers and is therefore a valuable method for deeper understanding of frameshift indels in human cancer. PredCID is freely available for academic research at http://bioinfo.ahu.edu.cn:8080/PredCID.


Assuntos
Mutação da Fase de Leitura , Genes Neoplásicos , Mutação INDEL , Proteínas de Neoplasias/genética , Neoplasias/genética , Software , Humanos
9.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33415333

RESUMO

Predicting disease-related long non-coding RNAs (lncRNAs) is beneficial to finding of new biomarkers for prevention, diagnosis and treatment of complex human diseases. In this paper, we proposed a machine learning techniques-based classification approach to identify disease-related lncRNAs by graph auto-encoder (GAE) and random forest (RF) (GAERF). First, we combined the relationship of lncRNA, miRNA and disease into a heterogeneous network. Then, low-dimensional representation vectors of nodes were learned from the network by GAE, which reduce the dimension and heterogeneity of biological data. Taking these feature vectors as input, we trained a RF classifier to predict new lncRNA-disease associations (LDAs). Related experiment results show that the proposed method for the representation of lncRNA-disease characterizes them accurately. GAERF achieves superior performance owing to the ensemble learning method, outperforming other methods significantly. Moreover, case studies further demonstrated that GAERF is an effective method to predict LDAs.


Assuntos
Neoplasias Pulmonares/genética , Aprendizado de Máquina , Redes Neurais de Computação , Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biologia Computacional/métodos , Gráficos por Computador/estatística & dados numéricos , Árvores de Decisões , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , MicroRNAs/classificação , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Longo não Codificante/classificação , RNA Longo não Codificante/metabolismo , Curva ROC , Fatores de Risco , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
10.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33866367

RESUMO

Although synonymous mutations do not alter the encoded amino acids, they may impact protein function by interfering with the regulation of RNA splicing or altering transcript splicing. New progress on next-generation sequencing technologies has put the exploration of synonymous mutations at the forefront of precision medicine. Several approaches have been proposed for predicting the deleterious synonymous mutations specifically, but their performance is limited by imbalance of the positive and negative samples. In this study, we firstly expanded the number of samples greatly from various data sources and compared six undersampling strategies to solve the problem of the imbalanced datasets. The results suggested that cluster centroid is the most effective scheme. Secondly, we presented a computational model, undersampling scheme based method for deleterious synonymous mutation (usDSM) prediction, using 14-dimensional biology features and random forest classifier to detect the deleterious synonymous mutation. The results on the test datasets indicated that the proposed usDSM model can attain superior performance in comparison with other state-of-the-art machine learning methods. Lastly, we found that the deep learning model did not play a substantial role in deleterious synonymous mutation prediction through a lot of experiments, although it achieves superior results in other fields. In conclusion, we hope our work will contribute to the future development of computational methods for a more accurate prediction of the deleterious effect of human synonymous mutation. The web server of usDSM is freely accessible at http://usdsm.xialab.info/.


Assuntos
Algoritmos , Biologia Computacional/métodos , Aprendizado de Máquina , Modelos Genéticos , Proteínas/genética , Mutação Silenciosa , Humanos , Proteínas/química , Reprodutibilidade dos Testes
11.
PLoS Comput Biol ; 18(9): e1010511, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36094961

RESUMO

Prediction of therapeutic peptide is a significant step for the discovery of promising therapeutic drugs. Most of the existing studies have focused on the mono-functional therapeutic peptide prediction. However, the number of multi-functional therapeutic peptides (MFTP) is growing rapidly, which requires new computational schemes to be proposed to facilitate MFTP discovery. In this study, based on multi-head self-attention mechanism and class weight optimization algorithm, we propose a novel model called PrMFTP for MFTP prediction. PrMFTP exploits multi-scale convolutional neural network, bi-directional long short-term memory, and multi-head self-attention mechanisms to fully extract and learn informative features of peptide sequence to predict MFTP. In addition, we design a class weight optimization scheme to address the problem of label imbalanced data. Comprehensive evaluation demonstrate that PrMFTP is superior to other state-of-the-art computational methods for predicting MFTP. We provide a user-friendly web server of PrMFTP, which is available at http://bioinfo.ahu.edu.cn/PrMFTP.


Assuntos
Algoritmos , Peptídeos , Peptídeos/uso terapêutico
12.
Brief Bioinform ; 21(1): 309-317, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30379998

RESUMO

While recently emergent driver mutation data sets are available for developing computational methods to predict cancer mutation effects, benchmark sets focusing on passenger mutations are largely missing. Here, we developed a comprehensive literature-based database of Cancer Passenger Mutations (dbCPM), which contains 941 experimentally supported and 978 putative passenger mutations derived from a manual curation of the literature. Using the missense mutation data, the largest group in the dbCPM, we explored patterns of missense passenger mutations by comparing them with the missense driver mutations and assessed the performance of four cancer-focused mutation effect predictors. We found that the missense passenger mutations showed significant differences with drivers at multiple levels, and several appeared in both the passenger and driver categories, showing pleiotropic functions depending on the tumor context. Although all the predictors displayed good true positive rates, their true negative rates were relatively low due to the lack of negative training samples with experimental evidence, which suggests that a suitable negative data set for developing a more robust methodology is needed. We hope that the dbCPM will be a benchmark data set for improving and evaluating prediction algorithms and serve as a valuable resource for the cancer research community. dbCPM is freely available online at http://bioinfo.ahu.edu.cn:8080/dbCPM.

13.
Brief Bioinform ; 21(3): 1038-1046, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30957840

RESUMO

DNA-binding hot spot residues of proteins are dominant and fundamental interface residues that contribute most of the binding free energy of protein-DNA interfaces. As experimental methods for identifying hot spots are expensive and time consuming, computational approaches are urgently required in predicting hot spots on a large scale. In this work, we systematically assessed a wide variety of 114 features from a combination of the protein sequence, structure, network and solvent accessible information and their combinations along with various feature selection strategies for hot spot prediction. We then trained and compared four commonly used machine learning models, namely, support vector machine (SVM), random forest, Naïve Bayes and k-nearest neighbor, for the identification of hot spots using 10-fold cross-validation and the independent test set. Our results show that (1) features based on the solvent accessible surface area have significant effect on hot spot prediction; (2) different but complementary features generally enhance the prediction performance; and (3) SVM outperforms other machine learning methods on both training and independent test sets. In an effort to improve predictive performance, we developed a feature-based method, namely, PrPDH (Prediction of Protein-DNA binding Hot spots), for the prediction of hot spots in protein-DNA binding interfaces using SVM based on the selected 10 optimal features. Comparative results on benchmark data sets indicate that our predictor is able to achieve generally better performance in predicting hot spots compared to the state-of-the-art predictors. A user-friendly web server for PrPDH is well established and is freely available at http://bioinfo.ahu.edu.cn:8080/PrPDH.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Algoritmos , Teorema de Bayes , Sítios de Ligação , Aprendizado de Máquina , Máquina de Vetores de Suporte
14.
Brief Bioinform ; 21(3): 970-981, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31157880

RESUMO

Synonymous mutations do not change the encoded amino acids but may alter the structure or function of an mRNA in ways that impact gene function. Advances in next generation sequencing technologies have detected numerous synonymous mutations in the human genome. Several computational models have been proposed to predict deleterious synonymous mutations, which have greatly facilitated the development of this important field. Consequently, there is an urgent need to assess the state-of-the-art computational methods for deleterious synonymous mutation prediction to further advance the existing methodologies and to improve performance. In this regard, we systematically compared a total of 10 computational methods (including specific method for deleterious synonymous mutation and general method for single nucleotide mutation) in terms of the algorithms used, calculated features, performance evaluation and software usability. In addition, we constructed two carefully curated independent test datasets and accordingly assessed the robustness and scalability of these different computational methods for the identification of deleterious synonymous mutations. In an effort to improve predictive performance, we established an ensemble model, named Prediction of Deleterious Synonymous Mutation (PrDSM), which averages the ratings generated by the three most accurate predictors. Our benchmark tests demonstrated that the ensemble model PrDSM outperformed the reviewed tools for the prediction of deleterious synonymous mutations. Using the ensemble model, we developed an accessible online predictor, PrDSM, available at http://bioinfo.ahu.edu.cn:8080/PrDSM/. We hope that this comprehensive survey and the proposed strategy for building more accurate models can serve as a useful guide for inspiring future developments of computational methods for deleterious synonymous mutation prediction.


Assuntos
Biologia Computacional/métodos , Mutação , Algoritmos , Conjuntos de Dados como Assunto , Humanos , Aprendizado de Máquina
15.
BMC Bioinformatics ; 22(1): 307, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103016

RESUMO

BACKGROUND: Circular RNAs (circRNAs) are a class of single-stranded RNA molecules with a closed-loop structure. A growing body of research has shown that circRNAs are closely related to the development of diseases. Because biological experiments to verify circRNA-disease associations are time-consuming and wasteful of resources, it is necessary to propose a reliable computational method to predict the potential candidate circRNA-disease associations for biological experiments to make them more efficient. RESULTS: In this paper, we propose a double matrix completion method (DMCCDA) for predicting potential circRNA-disease associations. First, we constructed a similarity matrix of circRNA and disease according to circRNA sequence information and semantic disease information. We also built a Gauss interaction profile similarity matrix for circRNA and disease based on experimentally verified circRNA-disease associations. Then, the corresponding circRNA sequence similarity and semantic similarity of disease are used to update the association matrix from the perspective of circRNA and disease, respectively, by matrix multiplication. Finally, from the perspective of circRNA and disease, matrix completion is used to update the matrix block, which is formed by splicing the association matrix obtained in the previous step with the corresponding Gaussian similarity matrix. Compared with other approaches, the model of DMCCDA has a relatively good result in leave-one-out cross-validation and five-fold cross-validation. Additionally, the results of the case studies illustrate the effectiveness of the DMCCDA model. CONCLUSION: The results show that our method works well for recommending the potential circRNAs for a disease for biological experiments.


Assuntos
RNA Circular , RNA , Distribuição Normal , RNA/genética
16.
BMC Bioinformatics ; 22(Suppl 3): 457, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34560840

RESUMO

BACKGROUND: As one of the deadliest diseases in the world, cancer is driven by a few somatic mutations that disrupt the normal growth of cells, and leads to abnormal proliferation and tumor development. The vast majority of somatic mutations did not affect the occurrence and development of cancer; thus, identifying the mutations responsible for tumor occurrence and development is one of the main targets of current cancer treatments. RESULTS: To effectively identify driver genes, we adopted a semi-local centrality measure and gene mutation effect function to assess the effect of gene mutations on changes in gene expression patterns. Firstly, we calculated the mutation score for each gene. Secondly, we identified differentially expressed genes (DEGs) in the cohort by comparing the expression profiles of tumor samples and normal samples, and then constructed a local network for each mutation gene using DEGs and mutant genes according to the protein-protein interaction network. Finally, we calculated the score of each mutant gene according to the objective function. The top-ranking mutant genes were selected as driver genes. We name the proposed method as mutations effect and network centrality. CONCLUSIONS: Four types of cancer data in The Cancer Genome Atlas were tested. The experimental data proved that our method was superior to the existing network-centric method, as it was able to quickly and easily identify driver genes and rare driver factors.


Assuntos
Neoplasias , Redes Reguladoras de Genes , Humanos , Mutação , Neoplasias/genética
17.
BMC Bioinformatics ; 22(Suppl 3): 253, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34000983

RESUMO

BACKGROUND: DNA-binding hot spots are dominant and fundamental residues that contribute most of the binding free energy yet accounting for a small portion of protein-DNA interfaces. As experimental methods for identifying hot spots are time-consuming and costly, high-efficiency computational approaches are emerging as alternative pathways to experimental methods. RESULTS: Herein, we present a new computational method, termed inpPDH, for hot spot prediction. To improve the prediction performance, we extract hybrid features which incorporate traditional features and new interfacial neighbor properties. To remove redundant and irrelevant features, feature selection is employed using a two-step feature selection strategy. Finally, a subset of 7 optimal features are chosen to construct the predictor using support vector machine. The results on the benchmark dataset show that this proposed method yields significantly better prediction accuracy than those previously published methods in the literature. Moreover, a user-friendly web server for inpPDH is well established and is freely available at http://bioinfo.ahu.edu.cn/inpPDH . CONCLUSIONS: We have developed an accurate improved prediction model, inpPDH, for hot spot residues in protein-DNA binding interfaces by given the structure of a protein-DNA complex. Moreover, we identify a comprehensive and useful feature subset including the proposed interfacial neighbor features that has an important strength for identifying hot spot residues. Our results indicate that these features are more effective than the conventional features considered previously, and that the combination of interfacial neighbor features and traditional features may support the creation of a discriminative feature set for efficient prediction of hot spot residues in protein-DNA complexes.


Assuntos
Biologia Computacional , Máquina de Vetores de Suporte , Bases de Dados de Proteínas , Ligação Proteica
18.
Brief Bioinform ; 20(5): 1925-1933, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30016397

RESUMO

While recent advances in next-generation sequencing technologies have enabled the creation of a multitude of databases in cancer genomic research, there is no comprehensive database focusing on the annotation of driver indels (insertions and deletions) yet. Therefore, we have developed the database of Cancer driver InDels (dbCID), which is a collection of known coding indels that likely to be engaged in cancer development, progression or therapy. dbCID contains experimentally supported and putative driver indels derived from manual curation of literature and is freely available online at http://bioinfo.ahu.edu.cn:8080/dbCID. Using the data deposited in dbCID, we summarized features of driver indels in four levels (gene, DNA, transcript and protein) through comparing with putative neutral indels. We found that most of the genes containing driver indels in dbCID are known cancer genes playing a role in tumorigenesis. Contrary to the expectation, the sequences affected by driver frameshift indels are not larger than those by neutral ones. In addition, the frameshift and inframe driver indels prefer to disrupt high-conservative regions both in DNA sequences and protein domains. Finally, we developed a computational method for discriminating cancer driver from neutral frameshift indels based on the deposited data in dbCID. The proposed method outperformed other widely used non-cancer-specific predictors on an external test set, which demonstrated the usefulness of the data deposited in dbCID. We hope dbCID will be a benchmark for improving and evaluating prediction algorithms, and the characteristics summarized here may assist with investigating the mechanism of indel-cancer association.


Assuntos
Bases de Dados Genéticas , Mutação INDEL , Neoplasias/genética , Humanos
19.
J Chem Inf Model ; 61(1): 525-534, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33426873

RESUMO

Blood-brain barrier peptides (BBPs) have a large range of biomedical applications since they can cross the blood-brain barrier based on different mechanisms. As experimental methods for the identification of BBPs are laborious and expensive, computational approaches are necessary to be developed for predicting BBPs. In this work, we describe a computational method, BBPpred (blood-brain barrier peptides prediction), that can efficiently identify BBPs using logistic regression. We investigate a wide variety of features from amino acid sequence information, and then a feature learning method is adopted to represent the informative features. To improve the prediction performance, seven informative features are selected for classification by eliminating redundant and irrelevant features. In addition, we specifically create two benchmark data sets (training and independent test), which contain a total of 119 BBPs from public databases and the literature. On the training data set, BBPpred shows promising performances with an AUC score of 0.8764 and an AUPR score of 0.8757 using the 10-fold cross-validation. We also test our new method on the independent test data set and obtain a favorable performance. We envision that BBPpred will be a useful tool for identifying, annotating, and characterizing BBPs. BBPpred is freely available at http://BBPpred.xialab.info.


Assuntos
Barreira Hematoencefálica , Peptídeos , Sequência de Aminoácidos , Modelos Logísticos
20.
BMC Bioinformatics ; 21(Suppl 13): 381, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32938395

RESUMO

BACKGROUND: Identification of hot spots in protein-DNA interfaces provides crucial information for the research on protein-DNA interaction and drug design. As experimental methods for determining hot spots are time-consuming, labor-intensive and expensive, there is a need for developing reliable computational method to predict hot spots on a large scale. RESULTS: Here, we proposed a new method named sxPDH based on supervised isometric feature mapping (S-ISOMAP) and extreme gradient boosting (XGBoost) to predict hot spots in protein-DNA complexes. We obtained 114 features from a combination of the protein sequence, structure, network and solvent accessible information, and systematically assessed various feature selection methods and feature dimensionality reduction methods based on manifold learning. The results show that the S-ISOMAP method is superior to other feature selection or manifold learning methods. XGBoost was then used to develop hot spots prediction model sxPDH based on the three dimensionality-reduced features obtained from S-ISOMAP. CONCLUSION: Our method sxPDH boosts prediction performance using S-ISOMAP and XGBoost. The AUC of the model is 0.773, and the F1 score is 0.713. Experimental results on benchmark dataset indicate that sxPDH can achieve generally better performance in predicting hot spots compared to the state-of-the-art methods.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Mapeamento de Interação de Proteínas/métodos , Humanos , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA