Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Brief Bioinform ; 19(4): 627-635, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28203711

RESUMO

Long noncoding RNAs (lncRNAs) are a large family of noncoding RNAs that play a critical role in various normal bioprocesses as well as tumorigenesis. However, the expression patterns and biological functions of lncRNAs in acute leukemia have not been well studied. Here, we performed transcriptome-wide lncRNA expression profiling of acute myeloid leukemia (AML) patient samples, along with non-leukemia control hematopoietic samples. We found that lncRNAs were differentially expressed in AML samples relative to control samples. Notably, we identified that lncRNAs upregulated in AML (relative to the control samples) are associated with a lower degree of DNA methylation and a higher ratio of being bound by transcription factors such as SP1, STAT4, ATF-2 and ELK-1 compared with those downregulated in AML. Moreover, an enrichment of H3K4me3 and a depletion of H3K27me3 were observed in upregulated lncRNAs in AML. Expression patterns of three types of lncRNAs (antisense, enhancer and intergenic lncRNAs) have previously been characterized. Of the identified lncRNAs, we found that high expression level lncRNA LOC285758 is associated with the poor prognosis in AML patients. Furthermore, we found that LOC285758 regulates proliferation of AML cell lines by enhancing the expression of HDAC2, a key factor in carcinogenesis. Collectively, our study depicts a landscape of important lncRNAs in AML and provides novel potential therapeutic targets and prognostic markers for AML treatment.


Assuntos
Regulação Neoplásica da Expressão Gênica , Histona Desacetilase 2/metabolismo , Leucemia Mieloide Aguda/genética , RNA Longo não Codificante/genética , Transcriptoma , Estudos de Casos e Controles , Histona Desacetilase 2/genética , Humanos , Células Tumorais Cultivadas
2.
Nucleic Acids Res ; 46(D1): D925-D929, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29036403

RESUMO

Circular RNA (circRNA) is a large group of RNA family extensively existed in cells and tissues. High-throughput sequencing provides a way to view circRNAs across different samples, especially in various diseases. However, there is still no comprehensive database for exploring the cancer-specific circRNAs. We collected 228 total RNA or polyA(-) RNA-seq samples from both cancer and normal cell lines, and identified 272 152 cancer-specific circRNAs. A total of 950 962 circRNAs were identified in normal samples only, and 170 909 circRNAs were identified in both tumor and normal samples, which could be further used as non-tumor background. We constructed a cancer-specific circRNA database (CSCD, http://gb.whu.edu.cn/CSCD). To understand the functional effects of circRNAs, we predicted the microRNA response element sites and RNA binding protein sites for each circRNA. We further predicted potential open reading frames to highlight translatable circRNAs. To understand the association between the linear splicing and the back-splicing, we also predicted the splicing events in linear transcripts of each circRNA. As the first comprehensive cancer-specific circRNA database, we believe CSCD could significantly contribute to the research for the function and regulation of cancer-associated circRNAs.


Assuntos
Neoplasias/genética , RNA Neoplásico/genética , RNA/genética , Sítios de Ligação , Biomarcadores Tumorais , Linhagem Celular , Linhagem Celular Tumoral , Coleta de Dados , Previsões , Regulação Neoplásica da Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Neoplasias/patologia , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fases de Leitura Aberta/genética , RNA/isolamento & purificação , Splicing de RNA , RNA Circular , RNA Neoplásico/isolamento & purificação , Proteínas de Ligação a RNA/metabolismo , Elementos de Resposta , Navegador
3.
Brief Bioinform ; 18(6): 984-992, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27543790

RESUMO

Circular RNA (circRNA) is a group of RNA family generated by RNA circularization, which was discovered ubiquitously across different species and tissues. However, there is no global view of tissue specificity for circRNAs to date. Here we performed the comprehensive analysis to characterize the features of human and mouse tissue-specific (TS) circRNAs. We identified in total 302 853 TS circRNAs in the human and mouse genome, and showed that the brain has the highest abundance of TS circRNAs. We further confirmed the existence of circRNAs by reverse transcription polymerase chain reaction (RT-PCR). We also characterized the genomic location and conservation of these TS circRNAs and showed that the majority of TS circRNAs are generated from exonic regions. To further understand the potential functions of TS circRNAs, we identified microRNAs and RNA binding protein, which might bind to TS circRNAs. This process suggested their involvement in development and organ differentiation. Finally, we constructed an integrated database TSCD (Tissue-Specific CircRNA Database: http://gb.whu.edu.cn/TSCD) to deposit the features of TS circRNAs. This study is the first comprehensive view of TS circRNAs in human and mouse, which shed light on circRNA functions in organ development and disorders.


Assuntos
Feto/metabolismo , Genoma , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , RNA/genética , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , RNA Circular
4.
Nat Commun ; 12(1): 3780, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145242

RESUMO

RNA N6-methyladenosine (m6A), the most abundant internal modification of mRNAs, plays key roles in human development and health. Post-translational methylation of proteins is often critical for the dynamic regulation of enzymatic activity. However, the role of methylation of the core methyltransferase METTL3/METTL14 in m6A regulation remains elusive. We find by mass spectrometry that METTL14 arginine 255 (R255) is methylated (R255me). Global mRNA m6A levels are greatly decreased in METTL14 R255K mutant mouse embryonic stem cells (mESCs). We further find that R255me greatly enhances the interaction of METTL3/METTL14 with WTAP and promotes the binding of the complex to substrate RNA. We show that protein arginine N-methyltransferases 1 (PRMT1) interacts with and methylates METTL14 at R255, and consistent with this, loss of PRMT1 reduces mRNA m6A modification globally. Lastly, we find that loss of R255me preferentially affects endoderm differentiation in mESCs. Collectively, our findings show that arginine methylation of METTL14 stabilizes the binding of the m6A methyltransferase complex to its substrate RNA, thereby promoting global m6A modification and mESC endoderm differentiation. This work highlights the crosstalk between protein methylation and RNA methylation in gene expression.


Assuntos
Adenosina/análogos & derivados , Arginina/metabolismo , Endoderma/citologia , Metiltransferases/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Adenosina/genética , Adenosina/metabolismo , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica/genética , Células HEK293 , Células HeLa , Humanos , Metilação , Metiltransferases/genética , Camundongos , Processamento de Proteína Pós-Traducional/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética
5.
Nat Genet ; 52(9): 870-877, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32778823

RESUMO

A dynamic epigenome is critical for appropriate gene expression in development and health1-5. Central to this is the intricate process of transcription6-11, which integrates cellular signaling with chromatin changes, transcriptional machinery and modifications to messenger RNA, such as N6-methyladenosine (m6A), which is co-transcriptionally incorporated. The integration of these aspects of the dynamic epigenome, however, is not well understood mechanistically. Here we show that the repressive histone mark H3K9me2 is specifically removed by the induction of m6A-modified transcripts. We demonstrate that the methyltransferase METTL3/METTL14 regulates H3K9me2 modification. We observe a genome-wide correlation between m6A and occupancy by the H3K9me2 demethylase KDM3B, and we find that the m6A reader YTHDC1 physically interacts with and recruits KDM3B to m6A-associated chromatin regions, promoting H3K9me2 demethylation and gene expression. This study establishes a direct link between m6A and dynamic chromatin modification and provides mechanistic insight into the co-transcriptional interplay between RNA modifications and histone modifications.


Assuntos
Adenosina/análogos & derivados , Histonas/genética , Adenosina/genética , Linhagem Celular , Cromatina/genética , Expressão Gênica/genética , Células HEK293 , Humanos , Metilação , Metiltransferases/genética , RNA Mensageiro/genética , Transcrição Gênica/genética
6.
Cells ; 8(2)2019 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-30781586

RESUMO

N6-methyladenosine (m6A) has been identified in various biological processes and plays important regulatory functions in diverse cells. However, there is still no visualization database for exploring global m6A patterns across cell lines. Here we collected all available MeRIP-Seq and m6A-CLIP-Seq datasets from public databases and identified 340,950 and 179,201 m6A peaks dependent on 23 human and eight mouse cell lines respectively. Those m6A peaks were further classified into mRNA and lncRNA groups. To better understand the potential function of m6A, we then mapped m6A peaks in different subcellular components and gene regions. Among those human m6A modification, 190,050 and 150,900 peaks were identified in cancer and non-cancer cells, respectively. Finally, all results were integrated and imported into a visualized cell-dependent m6A database CVm6A. We believe the specificity of CVm6A could significantly contribute to the research for the function and regulation of cell-dependent m6A modification in disease and development.


Assuntos
Adenosina/análogos & derivados , Bases de Dados como Assunto , Adenosina/metabolismo , Animais , Linhagem Celular , Humanos , Internet , Camundongos , Interface Usuário-Computador
7.
Nat Cell Biol ; 21(5): 651-661, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31036937

RESUMO

A single genome gives rise to diverse tissues through complex epigenomic mechanisms, including N6-methyladenosine (m6A), a widespread RNA modification that is implicated in many biological processes. Here, to explore the global landscape of m6A in human tissues, we generated 21 whole-transcriptome m6A methylomes across major fetal tissues using m6A sequencing. These data reveal dynamic m6A methylation, identify large numbers of tissue differential m6A modifications and indicate that m6A is positively correlated with gene expression homeostasis. We also report m6A methylomes of long intergenic non-coding RNA (lincRNA), finding that enhancer lincRNAs are enriched for m6A. Tissue m6A regions are often enriched for single nucleotide polymorphisms that are associated with the expression of quantitative traits and complex traits including common diseases, which may potentially affect m6A modifications. Finally, we find that m6A modifications preferentially occupy genes with CpG-rich promoters, features of which regulate RNA transcript m6A. Our data indicate that m6A is widely regulated by human genetic variation and promoters, suggesting a broad involvement of m6A in human development and disease.


Assuntos
Adenosina/análogos & derivados , Elementos Facilitadores Genéticos , Desenvolvimento Fetal/genética , Feto , Adenosina/genética , Epigenômica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Humanos , Metilação , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA