Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39056969

RESUMO

With the development of positioning technology and the widespread application of mobile positioning terminal devices, the acquisition of trajectory data has become increasingly convenient. Furthermore, mining information related to scenic spots and tourists from trajectory data has also become increasingly convenient. This study used the normalization results of information entropy to evaluate the attraction of scenic spots and the experience index of tourists. Tourists and scenic spots were chosen as the probability variables to calculate information entropy, and the probability values of each variable were calculated according to certain methods. There is a certain competitive relationship between scenic spots of the same type. When the distance between various scenic spots is relatively close (less than 8 km), a strong cooperative relationship can be established. Scenic spots with various levels of attraction can generally be classified as follows: cultural heritage, natural landscape, and leisure and entertainment. Scenic spots with higher attraction are usually those with a higher A-level and convenient transportation. A considerable number of tourists do not choose to visit crowded scenic destinations but choose some spots that they are more interested in according to personal preferences and based on access to free travel.

2.
Sensors (Basel) ; 21(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34960273

RESUMO

Indoor localization based on pedestrian dead reckoning (PDR) is drawing more and more attention of researchers in location-based services (LBS). The demand for indoor localization has grown rapidly using a smartphone. This paper proposes a 3D indoor positioning method based on the micro-electro-mechanical systems (MEMS) sensors of the smartphone. A quaternion-based robust adaptive cubature Kalman filter (RACKF) algorithm is proposed to estimate the heading of pedestrians based on magnetic, angular rate, and gravity (MARG) sensors. Then, the pedestrian behavior patterns are distinguished by detecting the changes of pitch angle, total accelerometer and barometer values of the smartphone in the duration of effective step frequency. According to the geometric information of the building stairs, the step length of pedestrians and the height difference of each step can be obtained when pedestrians go up and downstairs. Combined with the differential barometric altimetry method, the optimal height can be computed by the robust adaptive Kalman filter (RAKF) algorithm. Moreover, the heading and step length of each step are optimized by the Kalman filter to reduce positioning error. In addition, based on the indoor map vector information, this paper proposes a heading calculation strategy of the 16-wind rose map to improve the pedestrian positioning accuracy and reduce the accumulation error. Pedestrian plane coordinates can be solved based on the Pedestrian Dead-Reckoning (PDR). Finally, combining pedestrian plane coordinates and height, the three-dimensional positioning coordinates of indoor pedestrians are obtained. The proposed algorithm is verified by actual measurement examples. The experimental verification was carried out in a multi-story indoor environment. The results show that the Root Mean Squared Error (RMSE) of location errors is 1.04-1.65 m by using the proposed algorithm for three participants. Furthermore, the RMSE of height estimation errors is 0.17-0.27 m for three participants, which meets the demand of personal intelligent user terminal for location service. Moreover, the height parameter enables users to perceive the floor information.


Assuntos
Sistemas Microeletromecânicos , Pedestres , Algoritmos , Gravitação , Humanos , Smartphone
3.
Sensors (Basel) ; 21(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572401

RESUMO

Ancient pagodas are usually parts of hot tourist spots in many oriental countries due to their unique historical backgrounds. They are usually polygonal structures comprised by multiple floors, which are separated by eaves. In this paper, we propose a new method to investigate both the rotational and reflectional symmetry of such polygonal pagodas through developing novel geometric models to fit to the 3D point clouds obtained from photogrammetric reconstruction. The geometric model consists of multiple polygonal pyramid/prism models but has a common central axis. The method was verified by four datasets collected by an unmanned aerial vehicle (UAV) and a hand-held digital camera. The results indicate that the models fit accurately to the pagodas' point clouds. The symmetry was realized by rotating and reflecting the pagodas' point clouds after a complete leveling of the point cloud was achieved using the estimated central axes. The results show that there are RMSEs of 5.04 cm and 5.20 cm deviated from the perfect (theoretical) rotational and reflectional symmetries, respectively. This concludes that the examined pagodas are highly symmetric, both rotationally and reflectionally. The concept presented in the paper not only work for polygonal pagodas, but it can also be readily transformed and implemented for other applications for other pagoda-like objects such as transmission towers.

4.
Sensors (Basel) ; 20(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187376

RESUMO

The emergence of dual frequency global navigation satellite system (GNSS) chip actively promotes the progress of precise point positioning (PPP) technology in Android smartphones. However, some characteristics of GNSS signals on current smartphones still adversely affect the positioning accuracy of multi-GNSS PPP. In order to reduce the adverse effects on positioning, this paper takes Huawei Mate30 as the experimental object and presents the analysis of multi-GNSS observations from the aspects of carrier-to-noise ratio, cycle slip, gradual accumulation of phase error, and pseudorange residual. Accordingly, we establish a multi-GNSS PPP mathematical model that is more suitable for GNSS observations from a smartphone. The stochastic model is composed of GNSS step function variances depending on carrier-to-noise ratio, and the robust Kalman filter is applied to parameter estimation. The multi-GNSS experimental results show that the proposed PPP method can significantly reduce the effect of poor satellite signal quality on positioning accuracy. Compared with the conventional PPP model, the root mean square (RMS) of GPS/BeiDou (BDS)/GLONASS static PPP horizontal and vertical errors in the initial 10 min decreased by 23.71% and 62.06%, respectively, and the horizontal positioning accuracy reached 10 cm within 100 min. Meanwhile, the kinematic PPP maximum three-dimensional positioning error of GPS/BDS/GLONASS decreased from 16.543 to 10.317 m.

5.
Sensors (Basel) ; 21(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396679

RESUMO

In global navigation satellite system (GNSS)-based positioning and applications, multipath is by far the most obstinate impact. To overcome paradoxical issues faced by current processing approaches for multipath, this paper employs an intrinsic method to identify and mitigate multipath based on empirical mode decomposition (EMD) and Hilbert-Huang transform (HHT). Frequency spectrum and power spectrum are comprehensively employed to identify and extract multipath from complex data series composed by combined GNSS observations. To systematically inspect the multipath from both code range and carrier phase, typical kinds of combinations of the GNSS observations including the code minus phase (CMP), differential correction (DC), and double differential (DD) carrier phase are selected for the suggested intrinsic approach to recognize and mitigate multipath under typical positioning modes. Compared with other current processing algorithms, the proposed methodology can deal with multipath under normal positioning modes without recourse to the conditions that satellite orbits are accurately repeated and surrounding environments of observing sites remain intact. The method can adaptively extract and eliminate multipath from solely the GNSS observations using intrinsic decomposition mechanism. From theoretical discussions and validating tests, it is found that both code and carrier phase multipath can be identified and distinguished from ionospheric delay and other impacts using the EMD based techniques. The resultant positioning accuracy is therefore improved to an obvious extent after the removal of the multipath. Overall, the proposed method can form an extensive and sound technical frame to enhance localization accuracy under typical GNSS positioning modes and harsh multipath environments.

6.
Sensors (Basel) ; 20(16)2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824328

RESUMO

Pipe elbow joints exist in almost every piping system supporting many important applications such as clean water supply. However, spatial information of the elbow joints is rarely extracted and analyzed from observations such as point cloud data obtained from laser scanning due to lack of a complete geometric model that can be applied to different types of joints. In this paper, we proposed a novel geometric model and several model adaptions for typical elbow joints including the 90° and 45° types, which facilitates the use of 3D point clouds of the elbow joints collected from laser scanning. The model comprises translational, rotational, and dimensional parameters, which can be used not only for monitoring the joints' geometry but also other applications such as point cloud registrations. Both simulated and real datasets were used to verify the model, and two applications derived from the proposed model (point cloud registration and mounting bracket detection) were shown. The results of the geometric fitting of the simulated datasets suggest that the model can accurately recover the geometry of the joint with very low translational (0.3 mm) and rotational (0.064°) errors when ±0.02 m random errors were introduced to coordinates of a simulated 90° joint (with diameter equal to 0.2 m). The fitting of the real datasets suggests that the accuracy of the diameter estimate reaches 97.2%. The joint-based registration accuracy reaches sub-decimeter and sub-degree levels for the translational and rotational parameters, respectively.

7.
Sensors (Basel) ; 18(6)2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921813

RESUMO

Pedestrian dead reckoning (PDR) using smart phone-embedded micro-electro-mechanical system (MEMS) sensors plays a key role in ubiquitous localization indoors and outdoors. However, as a relative localization method, it suffers from the problem of error accumulation which prevents it from long term independent running. Heading estimation error is one of the main location error sources, and therefore, in order to improve the location tracking performance of the PDR method in complex environments, an approach based on robust adaptive Kalman filtering (RAKF) for estimating accurate headings is proposed. In our approach, outputs from gyroscope, accelerometer, and magnetometer sensors are fused using the solution of Kalman filtering (KF) that the heading measurements derived from accelerations and magnetic field data are used to correct the states integrated from angular rates. In order to identify and control measurement outliers, a maximum likelihood-type estimator (M-estimator)-based model is used. Moreover, an adaptive factor is applied to resist the negative effects of state model disturbances. Extensive experiments under static and dynamic conditions were conducted in indoor environments. The experimental results demonstrate the proposed approach provides more accurate heading estimates and supports more robust and dynamic adaptive location tracking, compared with methods based on conventional KF.

8.
Sensors (Basel) ; 16(6)2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27258284

RESUMO

Location fingerprinting suffers in dynamic environments and needs recalibration from time to time to maintain system performance. This paper proposes an adaptive approach for location fingerprinting. Based on real-time received signal strength indicator (RSSI) samples measured by a group of reference devices, the approach applies a modified Universal Kriging (UK) interpolant to estimate adaptive temporal and environmental radio maps. The modified UK can take the spatial distribution characteristics of RSSI into account. In addition, the issue of device heterogeneity caused by multiple reference devices is further addressed. To compensate the measuring differences of heterogeneous reference devices, differential RSSI metric is employed. Extensive experiments were conducted in an indoor field and the results demonstrate that the proposed approach not only adapts to dynamic environments and the situation of changing APs' positions, but it is also robust toward measuring differences of heterogeneous reference devices.

9.
Sensors (Basel) ; 16(9)2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-27589756

RESUMO

Localization is an essential requirement in the increasing prevalence of wireless sensor network (WSN) applications. Reducing the computational complexity, communication overhead in WSN localization is of paramount importance in order to prolong the lifetime of the energy-limited sensor nodes and improve localization performance. This paper proposes an effective Cuckoo Search (CS) algorithm for node localization. Based on the modification of step size, this approach enables the population to approach global optimal solution rapidly, and the fitness of each solution is employed to build mutation probability for avoiding local convergence. Further, the approach restricts the population in the certain range so that it can prevent the energy consumption caused by insignificant search. Extensive experiments were conducted to study the effects of parameters like anchor density, node density and communication range on the proposed algorithm with respect to average localization error and localization success ratio. In addition, a comparative study was conducted to realize the same localization task using the same network deployment. Experimental results prove that the proposed CS algorithm can not only increase convergence rate but also reduce average localization error compared with standard CS algorithm and Particle Swarm Optimization (PSO) algorithm.

10.
Micromachines (Basel) ; 12(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451172

RESUMO

The demands for indoor positioning in location-based services (LBS) and applications grow rapidly. It is beneficial for indoor positioning to combine attitude and heading information. Accurate attitude and heading estimation based on magnetic, angular rate, and gravity (MARG) sensors of micro-electro-mechanical systems (MEMS) has received increasing attention due to its high availability and independence. This paper proposes a quaternion-based adaptive cubature Kalman filter (ACKF) algorithm to estimate the attitude and heading based on smart phone-embedded MARG sensors. In this algorithm, the fading memory weighted method and the limited memory weighted method are used to adaptively correct the statistical characteristics of the nonlinear system and reduce the estimation bias of the filter. The latest step data is used as the memory window data of the limited memory weighted method. Moreover, for restraining the divergence, the filter innovation sequence is used to rectify the noise covariance measurements and system. Besides, an adaptive factor based on prediction residual construction is used to overcome the filter model error and the influence of abnormal disturbance. In the static test, compared with the Sage-Husa cubature Kalman filter (SHCKF), cubature Kalman filter (CKF), and extended Kalman filter (EKF), the mean absolute errors (MAE) of the heading pitch and roll calculated by the proposed algorithm decreased by 4-18%, 14-29%, and 61-77% respectively. In the dynamic test, compared with the above three filters, the MAE of the heading reduced by 1-8%, 2-18%, and 2-21%, and the mean of location errors decreased by 9-22%, 19-31%, and 32-54% respectively by using the proposed algorithm for three participants. Generally, the proposed algorithm can effectively improve the accuracy of heading. Moreover, it can also improve the accuracy of attitude under quasistatic conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA