Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Small ; 19(5): e2206041, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36446638

RESUMO

Membrane technology has shown a viable potential in conversion of liquid-waste or high-salt streams to fresh waters and resources. However, the non-adjustability pore size of traditional membranes limits the application of ion capture due to their low selectivity for target ions. Recently, covalent organic frameworks (COFs) have become a promising candidate for construction of advanced ion separation membranes for ion resource recovery due to their low density, large surface area, tunable channel structure, and tailored functionality. This tutorial review aims to analyze and summarize the progress in understanding ion capture mechanisms, preparation processes, and applications of COF-based membranes. First, the design principles for target ion selectivity are illustrated in terms of theoretical simulation of ions transport in COFs, and key properties for ion selectivity of COFs and COF-based membranes. Next, the fabrication methods of diverse COF-based membranes are classified into pure COF membranes, COF continuous membranes, and COF mixed matrix membranes. Finally, current applications of COF-based membranes are highlighted: desalination, extraction, removal of toxic metal ions, radionuclides and lithium, and acid recovery. This review presents promising approaches for design, preparation, and application of COF-based membranes in ion selectivity for recovery of ionic resources.

2.
Environ Sci Technol ; 57(34): 12879-12889, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37582261

RESUMO

Development of well-constructed metal-organic framework (MOF) membranes can bring about breakthroughs in nanofiltration (NF) performance for water treatment applications, while the relatively loose structures and inevitable defects usually cause low rejection capacity of MOF membranes. Herein, a confined interfacial polymerization (CIP) method is showcased to synthesize polyamide (PA)-modified NF membranes with MOF nanosheets as the building blocks, yielding a stepwise transition from two-dimensional (2D) MOF membranes to polyamide NF membranes. The CIP process was regulated by adjusting the loading amount of piperazine (PIP)-grafted MOF nanosheets on substrates and the additional content of free PIP monomers distributed among the nanosheets, followed by the reaction with trimesoyl chloride in the organic phase. The prepared optimal membrane exhibited a high Na2SO4 rejection of 98.4% with a satisfactory water permeance of 37.4 L·m-2·h-1·bar-1, which could be achieved by neither the pristine 2D MOF membranes nor the PA membranes containing the MOF nanosheets as the conventional interlayer. The PA-modified MOF membrane also displayed superior stability and enhanced antifouling ability. This CIP strategy provides a novel avenue to develop efficient MOF-based NF membranes with high ion-sieving separation performance for water treatment.


Assuntos
Estruturas Metalorgânicas , Nylons , Polimerização , Cloretos
3.
Environ Sci Technol ; 56(22): 15220-15237, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36330774

RESUMO

In view of the high risks brought about by organic micropollutants (OMPs), nanofiltration (NF) processes have been playing a vital role in advanced water and wastewater treatment, owing to the high membrane performance in rejection of OMPs, permeation of water, and passage of mineral salts. Though numerous studies have been devoted to evaluating and technically enhancing membrane performance in removing various OMPs, the trade-off effect between water permeance and water/OMP selectivity for state-of-the-art membranes remains far from being understood. Knowledge of this effect is significant for comparing and guiding membrane development works toward cost-efficient OMP removal. In this work, we comprehensively assessed the performance of 88 NF membranes, commercialized or newly developed, based on their water permeance and OMP rejection data published in the literature. The effectiveness and underlying mechanisms of various modification methods in tailoring properties and in turn performance of the mainstream polyamide (PA) thin-film composite (TFC) membranes were quantitatively analyzed. The trade-off effect was demonstrated by the abundant data from both experimental measurements and machine learning-based prediction. On this basis, the advancement of novel membranes was benchmarked by the performance upper-bound revealed by commercial membranes and lab-made PA membranes. We also assessed the potentials of current NF membranes in selectively separating OMPs from inorganic salts and identified the future research perspectives to achieve further enhancement in OMP removal and salt/OMP selectivity of NF membranes.


Assuntos
Membranas Artificiais , Purificação da Água , Estudos Prospectivos , Sais , Purificação da Água/métodos , Nylons , Água
4.
Sci Total Environ ; 858(Pt 2): 159922, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36336064

RESUMO

Nanofiltration (NF) membranes have been widely used in various fields including water treatment and other separation processes, while conventional thin film composite (TFC) membranes with polyamide (PA) selective layers suffer the problems of fouling and chlorine intolerance. Due to the abundant hydrophilic hydroxyl groups and ester bonds free from chlorine attack, the TFC membranes composed of polyester (PE) or polyester-amide (PEA) selective layers have been proven to possess enhanced anti-fouling properties and superior chlorine resistance. In this review, the research progress of PE and PEA nanofiltration membranes is systematically summarized according to the variety of hydroxyl-containing monomers for membrane fabrication by the interfacial polymerization (IP) reaction. The synthesis strategies as well as the mechanisms for tailoring properties and performance of PE and PEA membranes are analyzed, and the membrane application advantages are demonstrated. Moreover, current challenges and future perspectives of the development of PE and PEA nanofiltration membranes are proposed. This review can offer guidance for designing high-performance PE and PEA membranes, thereby further promoting the efficacy of nanofiltration.


Assuntos
Cloro , Membranas Artificiais , Poliésteres , Amidas , Permeabilidade
5.
Water Res ; 234: 119821, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889093

RESUMO

During the fabrication of thin film composite (TFC) membranes by interfacial polymerization (IP), the utilization of salt additives is one of the effective methods to regulate membrane properties and performance. Despite gradually receiving widespread attention for membrane preparation, the strategies, effects and underlying mechanisms of using salt additives have not yet been systematically summarized. This review for the first time provides an overview of various salt additives used to tailor properties and performance of TFC membranes for water treatment. By classifying salt additives into organic and inorganic salts, the roles of added salt additives in the IP process and the induced changes in membrane structure and properties are discussed in detail, and the different mechanisms of salt additives affecting membrane formation are summarized. Based on these mechanisms, the salt-based regulation strategies have shown great potential for improving the performance and application competitiveness of TFC membranes, including overcoming the trade-off relationship between water permeability and salt selectivity, tailoring membrane pore size distribution for precise solute-solute separation, and enhancing membrane antifouling performance. Finally, future research directions are suggested to focus on the long-term stability assessment of salt-modified membranes, the combined use of different salt additives, and the integration of salt regulation with other membrane design or modification strategies.


Assuntos
Membranas Artificiais , Nylons , Nylons/química , Permeabilidade , Cloreto de Sódio , Polimerização
6.
Environ Sci Pollut Res Int ; 29(40): 61222-61235, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35438400

RESUMO

To explore the occurrence, source, and risk of 16 priority polycyclic aromatic hydrocarbons (PAHs) in urban source water at the tidal reach of the Yangtze River, eighty-nine surface water samples were collected in 8 field campaigns from July 2018 to November 2019. Fifteen of 16 PAHs except for dibenz(a,h)anthracene (DBA) were found in the water. Detection frequencies were observed between 53 and 72% for PAHs with 4 rings, while most of other PAHs were less detected, e.g., benzo(a)pyrene (BaP) in 31% of samples. The total concentrations of 16 priority PAHs reached up to 2.8 µg·L-1 and increased during the tidal transitions from flood to ebb. The average concentrations of PAHs in ebb tides were higher than those in flood tides. PAH concentrations and compositions showed great variation with different sampling campaigns, and higher levels and more components were observed in the rainy months and cold months. Those priority PAHs in the tidal water source are mainly from combustion activities (especially fossil fuel combustion), but the contribution from oil spills/leakage is also important in rainy months. High-molecular-weight PAHs in this tidal water source may pose risks to aquatic life, while they pose no carcinogenic risk to human health via ingestion of drinking water.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , China , Monitoramento Ambiental , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Rios , Água , Poluentes Químicos da Água/análise
7.
Membranes (Basel) ; 11(5)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069324

RESUMO

The membrane separation process is being widely used in water treatment. It is very important to control membrane fouling in the process of water treatment. This study was conducted to evaluate the efficiency of a pre-oxidation-coagulation flat ceramic membrane filtration process using different oxidant types and dosages in water treatment and membrane fouling control. The results showed that under suitable concentration conditions, the effect on membrane fouling control of a NaClO pre-oxidation combined with a coagulation/ceramic membrane system was better than that of an O3 system. The oxidation process changed the structure of pollutants, reduced the pollution load and enhanced the coagulation process in a pre-oxidation-coagulation system as well. The influence of the oxidant on the filtration system was related to its oxidizability and other characteristics. NaClO and O3 performed more efficiently than KMnO4. NaClO was more conducive to the removal of DOC, and O3 was more conducive to the removal of UV254.

8.
Chemosphere ; 261: 127580, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32736241

RESUMO

With the increasing demand of high water-quality, membrane filtration technologies are playing further important roles in water treatment owing to their small footprints, reduced use of chemicals and stable performances. However, the inherent permeability-selectivity trade-off is still a significant obstacle restricting the broad applications of membrane separation. Hydrophilic modification via doping nanoparticles into membranes is considered an effective solution to improve the permeability while maintaining selectivity. However, agglomeration of nanoparticles often results in inhomogeneity of the modified membranes. In this study, hybrid membranes with separated covalent organic framework (COF) particles that were uniformly embedded in the membrane surface pores were firstly fabricated via acetic-acid-catalyzed in situ synthesis. Owing to the ample hydrophilic chemical groups and tunable molecular transport channels in COFs, the modified membranes yielded almost twice higher water flux (about 200 L m-2·h-1·bar) than the pristine membranes with simultaneously enhanced rejection of water pollutants (i.e., dyes). In addition, the pure organic structure of COF improves the polymer-filler interaction of the mixed film, thereby reducing the risk of leakage. Therefore, the hybrid membranes also exhibited relatively high stability in long-term operations and different pH conditions, which makes them promising candidates in future membrane applications.


Assuntos
Corantes/química , Estruturas Metalorgânicas/química , Purificação da Água/métodos , Ácido Acético , Catálise , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Nanopartículas/química , Permeabilidade , Polimerização , Polímeros/química
9.
Chemosphere ; 256: 127099, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32470733

RESUMO

Membrane fouling is an issue of concern due to the hydrophobic properties of polyethersulfone (PES) membrane when applied in water treatment. In this work, a facile hydrothermal method was utilized to synthesize hierarchical flower-like structured molybdenum disulfide nanosheets (HF-MoS2 NSs) that then incorporated into PES membranes as composite membranes. We characterized their permeability, the separation performance, the antifouling performance, and the antibacterial activity systematically. Results showed that composite membranes exhibited a better pure water flux (286 LMH/bar) at the HF-MoS2 NSs content of 0.4 wt%, which was 1.8 times higher than the control membrane. Also, composite PES membranes achieved 98.2% and 96.9% rejection of BSA and HA in comparison with the control PES membrane (87.3%, and 84.5%, respectively). Compare to the control PES membrane, the flux recovery ratio of the composite membrane increased from 69% to 88% for BSA fouling and increased from 84% to 93% for HA fouling. The retention rate for the organic dyes also improved slightly after HF-MoS2 NSs incorporation into the membrane. Additionally, the composite membranes exhibited a relatively high antibacterial activity against E. coli and B. subtilis with antibacterial rates of 67.8% and 82.5%, respectively. In conclusion, HF-MoS2 NSs incorporated composite membranes were shown to have outstanding filtration performance and could be a promising candidate for practical application in water filtration.


Assuntos
Nanoestruturas/química , Polímeros/química , Sulfonas/química , Purificação da Água/métodos , Dissulfetos/química , Escherichia coli , Filtração , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Molibdênio/química , Permeabilidade , Água/química
10.
Polymers (Basel) ; 12(9)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858818

RESUMO

The unique two-dimensional structure and chemical properties of graphene oxide (GO) provide a convenient method for preparing novel membranes. In this study, GO membranes were prepared through filtration by a pressure-assisted self-assembly method involving the cross-linking of three diamine monomers on a polyethersulfone (PES) support. The different small molecular diamines, ethylenediamine, butanediamine, and p-phenylenediamine, were introduced as cross-linking agents to investigate the effect of diamine on the properties of GO membranes. The hydrophobic substances ibuprofen, gemfibrozil, and triclosan were selected as target pharmaceuticals and personal care products (PPCPs). The adsorption and molecular sieving activities of PPCPs by cross-linked GO membranes at a pH of 3 were investigated. The permeate water was analyzed for dissolved organic carbon, ultraviolet absorption at 254 nm, molecular weight distribution, and fluorescence excitation-emission matrices. The results showed that the removal of hydrophobic PPCPs by GO membranes was mainly due to their adsorption and molecular sieving activities. Adsorption was mainly determined by the hydrophilic and hydrophobic properties of the membranes and PPCPs. The interception effect was mainly determined by the interlayer spacing between the GO membranes and the molecular weight and steric hindrance of the PPCPs. A smaller spacing of the GO membrane layers resulted in greater steric hindrance and a higher removal rate.

11.
Water Environ Res ; 92(12): 2049-2059, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32474955

RESUMO

In this study, UV-LED was employed as a novel light source to investigate the degradation of a representative antibiotic compound, chloramphenicol (CAP), in the absence or presence of H2 O2 . The UV-LED irradiation showed a higher capability for degradation of CAP than conventional UV-Hg vapor lamps. Effects of the initial CAP concentration, UV wavelength, and light intensity on the degradation of CAP by UV-LED were evaluated. Introduction of H2 O2 evidently enhanced the degradation efficiency of CAP due to the production of reactive hydroxyl radicals. Results showed that the UV-LED/H2 O2 removed CAP by up to 95% within 60 min at pH 5.0, which was twice as that achieved by the UV-LED alone. The degradation products were identified to propose plausible degradation pathways. Moreover, the formation potentials of typical carbonaceous disinfection by-products (C-DBPs) and nitrogenous disinfection by-products (N-DBPs) were assessed for the CAP polluted water treated by the UV-LED alone and UV-LED/H2 O2 processes. Results indicate unintended formation of certain DBPs, thereby highlighting the importance of health risk assessments before practical application. This study opens a new avenue for developing environment-friendly and high-performance UV-LED photocatalytic reactors for abatement of CAP pollution in water. PRACTITIONER POINTS: UV-LED bore higher capability to degrade CAP than low-pressure Hg lamp. The optimal performance to degrade CAP can be achieved at the UV wavelength of 280 nm. The degradation efficiency under UV-LED/H2 O2 process was double of that under UV-LED process. TCM, DCAN, and TCNM formation were higher under the existence of UV-LED radiation. The addition of H2 O2 had greater influence on the formation of DCAcAm than the introduction of UV-LED.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloranfenicol , Desinfecção , Halogenação , Raios Ultravioleta
12.
J Hazard Mater ; 162(2-3): 954-9, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18639981

RESUMO

The photochemical degradation of dimethyl phthalate (DMP) in UV/H(2)O(2) advanced oxidation process was studied and a kinetic model based on the elementary reactions involved was developed in this paper. Relatively slow DMP degradation was observed during UV radiation, while DMP was not oxidized by H(2)O(2) alone. In contrast, the combined UV/H(2)O(2) process could effectively degraded DMP, which is attributed to the strong oxidation strength of hydroxyl radical produced. Results show that DMP degradation rate was affected by H(2)O(2) concentration, intensity of UV radiation, initial DMP concentration, and solution pH. A kinetic model without the pseudo-steady state assumption was established according to the generally accepted elementary reactions in UV/H(2)O(2) advanced oxidation process. The rate constant for the reaction between DMP and hydroxyl radical was found to be 4.0 x 10(9) M(-1)s(-1) through fitting the experimental data to this model. The kinetic model could adequately describe the influence of key factors on DMP degradation rate in UV/H(2)O(2) advanced oxidation process, and could serve as a guide in designing treatment systems for DMP removal.


Assuntos
Peróxido de Hidrogênio/química , Ácidos Ftálicos/química , Raios Ultravioleta , Concentração de Íons de Hidrogênio , Cinética , Oxirredução
13.
Chemosphere ; 220: 1067-1074, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33395793

RESUMO

Due to its high mass transfer efficiency, microbubble ozonation has been widely used in water treatment to degrade refractory compounds. Compared to conventional bubbles (diameters larger than 1 mm), microbubbles (diameter less than 50 µm) have special interfacial characteristics that are probably advantageous in ozonation. However, the mechanisms involved are still unclear and therefore our primary aim here was to explore the interfacial effect of microbubbles during ozonation process. Phenol and nitrobenzene degradation by ozone microbubbles and conventional bubbles were carried out across a broad pH range. We found that microbubble decomposition of pollutants was markedly more efficient than conventional bubbles in terms of ozone consumption. Hydroxyl radical scavenger experiments of phenol revealed that the enhancement of microbubble might result from the increase of ozone concentration in interfacial region and a mathematical simulation further proved this synthesis by showing that ozone concentration is not homogenous throughout the reaction medium and forms a steep gradient in the liquid film of microbubbles. As for nitrobenzene, the acceleration of hydroxyl radicals was supposed to be the dominate factor which might be the consequence of high gas concentration in liquid film. These findings shed light on the mechanism of interfacial reaction in microbubble ozonation.

14.
Aquat Toxicol ; 204: 19-26, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30170208

RESUMO

The vast majority of studies measure the toxic effect of organisms exposed to nanoparticles (NPs) while there is still a lack of knowledge about the influence of NPs on the aquatic environment. It is unknown whether or not the interaction between NPs and algae will result in the variation of algal organic matter (AOM) and stimulate the production of more algal toxins. In this study, zinc oxide nanoparticles (nano-ZnO) as a typical representative of metal oxide NPs were used to evaluate the toxic effects and environmental feedback of Microcystis aeruginosa. Reactive oxygen species (ROS) and malondialdehyde (MDA) were measured to explain the toxicity mechanism. Changes of AOM, including the production of toxins, the molecular weight distribution and the excitation-emission matrices of algal solution were also studied as environmental feedback indicators after nano-ZnO destroyed the algae. As the nano-ZnO exceeded the comparable critical concentration (1.0 mg/L), the algae were destroyed and intracellular organic matters were released into the aquatic environment, which stimulated the generation of microcystin-LR (MC-LR). However, it is worth noting that the concentration of nano-ZnO would need to be high (at mg/L range) to stimulate more MC-LR production. These findings are expected to be beneficial in interpreting the toxicity and risks of the releasing of NPs through the feedback between algae and the aquatic environment.


Assuntos
Exposição Ambiental/análise , Nanopartículas Metálicas/toxicidade , Microcystis/efeitos dos fármacos , Testes de Toxicidade , Óxido de Zinco/toxicidade , Clorofila/metabolismo , Clorofila A , Interações Hidrofóbicas e Hidrofílicas , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Toxinas Marinhas , Lipídeos de Membrana/metabolismo , Microcistinas/metabolismo , Microcystis/crescimento & desenvolvimento , Microcystis/metabolismo , Microcystis/ultraestrutura , Peso Molecular , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fatores de Risco , Espectrometria de Fluorescência , Poluentes Químicos da Água/toxicidade
15.
Sci Total Environ ; 615: 38-46, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28963895

RESUMO

Acrylamide is a monomer of polyacrylamide, which is widely used in the water treatment process as a flocculant. The degradation kinetics and formation of disinfection by-products (DBPs) during acrylamide chlorination were investigated in this study. The reaction between chlorine and acrylamide followed a pseudo-first-order kinetics. A kinetic model regarding acrylamide chlorination was established and the rate constants of each predominant elementary reaction (i.e., the base-catalyzed reaction of acrylamide with ClO- as well as the reactions of acrylamide with HOCl and ClO-) were calculated as 7.89×107M-2h-1, 7.72×101M-1h-1, and 1.65×103M-1h-1, respectively. The presence of Br- in water led to the formation of HOBr and accelerated the rate of acrylamide degradation by chlorine. The reaction rate constant of acrylamide with HOBr was calculated as 1.33×103M-1h-1. The degradation pathways of acrylamide chlorination were proposed according to the intermediates identified using ultra-performance liquid chromatography and electrospray ionization-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Five chlorinated DBPs including chloroform (CF), dichloroacetonitrile (DCAN), trichloroacetonitrile (TCAN), dichloroacetamide (DCAcAm), and trichloroacetamide (TCAcAm) were identified during acrylamide chlorination. The formation of CF, DCAN, DCAcAm, and TCAcAm kept increasing, while that of TCAN increased and then decreased with increasing reaction time. As the chlorine dosage increased from 0.75 to 4.5mM, DCAN became the dominant DBP. Large amounts of CF, DCAN, and TCAN were formed at basic pHs. The hydrolysis of DCAN and TCAN led to the formation of DCAcAm and TCAcAm, respectively. The results of this study elucidated that acrylamide can be a precursor for the formation of haloacetonitriles (HANs) and haloacetamides (HAcAms) during drinking water treatment.

16.
J Hazard Mater ; 353: 505-513, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29709870

RESUMO

This study investigated the formation of toxic iodinated trihalomethanes (I-THMs) during breakpoint chlorination of iodide-containing water. Impact factors including I- concentration, natural organic matter (NOM) concentration and type, pH as well as Br-/I- molar ratio were systematically investigated. Moreover, the incorporation of I- into I-THM formation was also calculated. The results showed that I-THM formation varied in different zones of the breakpoint curves. I-THMs increased with increasing chlorine dosage to breakpoint value and then dropped significantly beyond it. Iodoform (CHI3) and chlorodiiodomethane (CHClI2) were the major I-THMs in the pre-breakpoint zone, while dichloroiodomethane (CHCl2I) was the dominant one in the post-breakpoint zone. The formation of I-THMs increased remarkably with I- and dissolved organic carbon (DOC) concentrations. More bromine-containing species were formed as Br-/I- molar ratio increased from 0.5 to 5. In addition, the major I-THM compound shifted from CHCl2I to the more toxic CHClBrI. As pH increased from 6.0 to 8.0, I-THM formation kept increasing in the pre-breakpoint zone and the speciation of I-THMs changed alongside the breakpoint curves. The incorporation of I- during breakpoint chlorination was highly dependent on chlorine, I-, and NOM concentrations, NOM type, solution pH and Br-/I- molar ratio.

17.
J Hazard Mater ; 139(1): 132-9, 2007 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-16870331

RESUMO

The decomposition of diethyl phthalate (DEP) in water using UV-H2O2 process was investigated in this paper. DEP cannot be effectively removed by UV radiation and H2O2 oxidation alone, while UV-H2O2 combination process proved to be effective and could degrade this compound completely. With initial concentration about 1.0mg/L, more than 98.6% of DEP can be removed at time of 60 min under intensity of UV radiation of 133.9 microW/cm2 and H2O2 dosage of 20mg/L. The effects of applied H2O2 dose, UV radiation intensity, water temperature and initial concentration of DEP on the degradation of DEP have been examined in this study. Degradation mechanisms of DEP with hydroxyl radicals oxidation also have been discussed. Removal rate of DEP was sensitive to the operational parameters. A simple kinetic model is proposed which confirms to pseudo-first order reaction. There is a linear relationship between rate constant k and UV intensity and H2O2 concentration.


Assuntos
Peróxido de Hidrogênio/química , Fotoquímica , Ácidos Ftálicos/metabolismo , Ácidos Ftálicos/efeitos da radiação , Raios Ultravioleta , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Cinética , Espectrometria de Massas , Oxirredução/efeitos da radiação , Ácidos Ftálicos/análise , Ácidos Ftálicos/química , Espectrofotometria Ultravioleta , Temperatura , Água
18.
Water Environ Res ; 79(11): 2260-4, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17966693

RESUMO

This study focuses on the effectiveness of calcium (Ca2+) improving ferric (hydro)oxides precipitation and its subsequent effects on arsenic co-precipitation with ferric (hydro)oxides. The effects of Ca2+ on surface charge characteristics and precipitating behavior, which are respectively represented as zeta (zeta) potential and R(PDA), are investigated for ferric (hydro)oxides precipitates. The presence of Ca2+ increases the potential of ferric (hydro)oxides, and a more significant effect is observed at higher pH conditions. Calcium apparently facilitates ferric (hydro)oxide floc aggregation, increasing the maximum R(PDA) from 3.19 to 5.27% (in the presence of 3.5 mg/L silicate as silicon). These positive effects contribute to reduce the adverse effects resulting from the presence of silicate and enhance arsenic removal via ferric (hydro)oxides co-precipitation under different conditions. Furthermore, the effect of Ca2+ facilitating ferric precipitation (and therefore providing more precipitated solids for arsenic) is predominant in favoring arsenic removal compared with that of increasing surface charge. Calcium plays an important role in arsenic co-precipitation with ferric (hydro)oxides in the presence of silicate.


Assuntos
Arsênio/química , Cálcio/química , Compostos Férricos/química , Silicatos/química , Purificação da Água , Precipitação Química , Concentração de Íons de Hidrogênio , Propriedades de Superfície
19.
J Environ Sci (China) ; 19(5): 536-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17915681

RESUMO

In recent years, membrane ultrafiltration (UF) of surface water for drinking water treatment has become a more attractive technology worldwide as a possible alternative treatment to conventional clarification. To evaluate the performance of ultrafiltration membranes for treatment of surface water in North China, a 48-m2 low pressure hollow fiber membrane ultrafiltration pilot plant was constructed. Ultrafiltration was operated in cross-flow and with powdered activated carbon (PAC) adsorption. Turbidity was almost completely removed to less than 0.2 NTU (below Chinese standard 1 NTU). It was found that PAC addition enhanced organic matter removal. The combined process of PAC/UF allowed to 41% removal of COD(Mn), 46% removal of DOC and 57% decrease in UV254 absorbance. The elimination of particles, from average 12000/ml in the raw water to approximately 15/ml in the permeated, was observed. When PAC concentration was below 30 mg/L, backwashing could recovery the membrane flux with backwash interval/backwashing duration of 1/30.


Assuntos
Carbono/química , Membranas Artificiais , Cloreto de Polivinila , Poluentes da Água/química , Purificação da Água/métodos , Adsorção , China , Nefelometria e Turbidimetria , Projetos Piloto , Rios , Ultrafiltração , Abastecimento de Água
20.
Chemosphere ; 187: 268-276, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28854381

RESUMO

The degradation of acrylamide (AA) during UV/chlorine advanced oxidation process (AOP) was investigated in this study. The degradation of AA was negligible during UV irradiation alone. However, AA could be effectively degraded and mineralized during UV/chlorination due to the generation of hydroxyl radicals (OH). The degradation kinetics of AA during UV/chlorination fitted the pseudo-first order kinetics with the rate constant between AA and OH radicals being determined as 2.11 × 109 M-1 s-1. The degradation rate and mineralization of AA during UV/chlorination were significantly promoted at acidic conditions as well as increasing chlorine dosage. The volatile degradation products of AA during UV/chlorination were identified using gas chromatography-mass spectrometry and the degradation pathways were then proposed accordingly. The formation of disinfection by-products (DBPs) in Milli-Q water and tap water during UV/chlorination of AA was also investigated. The DBPs included chloroform, dichloroacetonitrile, trichloroacetonitrile, 2,2-dichloroacetamide and 2,2,2-trichloroacetamide. Furthermore, the variations of AA degradation during UV/chlorination in different real water samples were evaluated.


Assuntos
Acrilamida/análise , Modelos Químicos , Raios Ultravioleta , Poluentes Químicos da Água/química , Acetamidas/química , Acrilamida/química , Cloro/química , Clorofórmio/análise , Desinfecção/métodos , Halogenação , Radical Hidroxila , Íons , Cinética , Oxirredução , Poluentes Químicos da Água/análise , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA