Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D1651-D1660, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37843152

RESUMO

Tropical crops are vital for tropical agriculture, with resource scarcity, functional diversity and extensive market demand, providing considerable economic benefits for the world's tropical agriculture-producing countries. The rapid development of sequencing technology has promoted a milestone in tropical crop research, resulting in the generation of massive amount of data, which urgently needs an effective platform for data integration and sharing. However, the existing databases cannot fully satisfy researchers' requirements due to the relatively limited integration level and untimely update. Here, we present the Tropical Crop Omics Database (TCOD, https://ngdc.cncb.ac.cn/tcod), a comprehensive multi-omics data platform for tropical crops. TCOD integrates diverse omics data from 15 species, encompassing 34 chromosome-level de novo assemblies, 1 255 004 genes with functional annotations, 282 436 992 unique variants from 2048 WGS samples, 88 transcriptomic profiles from 1997 RNA-Seq samples and 13 381 germplasm items. Additionally, TCOD not only employs genes as a bridge to interconnect multi-omics data, enabling cross-species comparisons based on homology relationships, but also offers user-friendly online tools for efficient data mining and visualization. In short, TCOD integrates multi-species, multi-omics data and online tools, which will facilitate the research on genomic selective breeding and trait biology of tropical crops.


Assuntos
Produtos Agrícolas , Bases de Dados Genéticas , Produtos Agrícolas/genética , Transcriptoma , Genoma de Planta
2.
Plant Physiol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635971

RESUMO

Rapid postharvest physiological deterioration (PPD) of cassava (Manihot esculenta Crantz) storage roots is a major constraint that limits the potential of this plant as a food and industrial crop. Extensive studies have been performed to explore the regulatory mechanisms underlying the PPD processes in cassava to understand their molecular and physiological responses. However, the exceptional functional versatility of alternative splicing (AS) remains to be explored during the PPD process in cassava. Here, we identified several aberrantly spliced genes during the early PPD stage. An in-depth analysis of AS revealed that the abscisic acid (ABA) biosynthesis pathway might serve as an additional molecular layer in attenuating the onset of PPD. Exogenous ABA application alleviated PPD symptoms through maintaining ROS generation and scavenging. Interestingly, the intron retention transcript of MeABA1 (ABA DEFICIENT 1) was highly correlated with PPD symptoms in cassava storage roots. RNA yeast three-hybrid and RNA immunoprecipitation assays showed that the serine/arginine-rich protein MeSCL33 (SC35-like splicing factor 33) binds to the precursor mRNA of MeABA1. Importantly, overexpressing MeSCL33 in cassava conferred improved PPD resistance by manipulating the AS and expression levels of MeABA1 and then modulating the endogenous ABA levels in cassava storage roots. Our results uncovered the pivotal role of the ABA biosynthesis pathway and RNA splicing in regulating cassava PPD resistance and proposed the essential roles of MeSCL33 for conferring PPD resistance, broadening our understanding of SR proteins in cassava development and stress responses.

3.
Ecol Appl ; 34(1): e2826, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36840509

RESUMO

Environmental DNA (eDNA) has increasingly been used to detect rare species (e.g., newly introduced nonindigenous species) in both terrestrial and aquatic ecosystems, often with distinct advantages over traditional methods. However, whether water eDNA signals can be used to inform invasion risks remains debatable owing to inherent uncertainties associated with the methods used and the varying conditions among study systems. Here, we sampled eDNA from canals of the central route of the South-to-North Water Diversion Project (hereafter SNWDP) in China to investigate eDNA distribution and efficacy to inform invasion risks in a unique lotic system. We first conducted a total of 16 monthly surveys in this system (two sites in the source reservoir and four sites in the main canal) to test if eDNA could be applied to detect an invasive, biofouling bivalve, the golden mussel Limnoperna fortunei. Second, we initiated a one-time survey in a sub-canal of the SNWDP using refined sampling (12 sites in ~22 km canal) and considered a few environmental predictors. We found that detection of target eDNA in the main canal was achieved up to 1100 km from the putative source population but was restricted to the warmer months (May-November). Detection probability exhibited a significant positive relationship with average daily minimum air temperature and with water temperature, consistent with the expected spawning season. eDNA concentration in the main canal generally fluctuated across months and sites and was generally higher in warmer months. Golden mussel eDNA concentration in the sub-canal decreased significantly with distance from the source and with increasing water temperature and became almost undetectable at ~22 km distance. Given the enormity of the SNWDP, golden mussels may eventually expand their distribution in the main canal, with established "bridgehead" populations facilitating further spread. Our findings suggest an elevated invasion risk of golden mussels in the SNWDP in warm months, highlighting the critical period for spread and, possibly, management.


Assuntos
Incrustação Biológica , Bivalves , DNA Ambiental , Animais , DNA Ambiental/genética , Água , Ecossistema , Bivalves/genética
4.
Pharmacol Res ; 197: 106978, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37923027

RESUMO

Animal venom is an important evolutionary innovation in nature. As one of the most representative animal venoms, scorpion venom contains an extremely diverse set of bioactive peptides. Scorpion venom peptides not only are 'poisons' that immobilize, paralyze, kill, or dissolve preys but also become important candidates for drug development and design. Here, the review focuses on the molecular diversity of scorpion venom peptides, their typical structural characteristics, and their multiple therapeutic or pharmaceutical applications in channelopathies, viral infections and cancers. Especially, the group of scorpion toxin TRPTx targeting transient receptor potential (TRP) channels is systematically summarized and worthy of attention because TRP channels play a crucial role in the regulation of homeostasis and the occurrence of diseases in human. We also further establish the potential relationship between the molecular characteristics and functional applications of scorpion venom peptides to provide a research basis for modern drug development and clinical utilization of scorpion venom resources.


Assuntos
Canalopatias , Neoplasias , Venenos de Escorpião , Viroses , Animais , Humanos , Venenos de Escorpião/uso terapêutico , Neoplasias/tratamento farmacológico , Evolução Biológica
5.
BMC Infect Dis ; 23(1): 467, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37442963

RESUMO

BACKGROUND: To investigate the impact of the coronavirus disease 2019 (COVID-19) outbreak on the prevalence of respiratory viruses among pediatric patients with acute respiratory infections in Xuzhou from 2015-2021. METHODS: Severe acute respiratory infection (SARI) cases in hospitalized children were collected from 2015-2021 in Xuzhou, China. Influenza virus(IFV), respiratory syncytial virus (RSV), human parainfluenza virus type 3(hPIV-3), human rhinovirus (hRV), human adenovirus(hAdV), human coronavirus(hCoV) were detected by real-time fluorescence polymerase chain reaction(RT-qPCR), and the results were statistically analyzed by SPSS 23.0 software. RESULTS: A total of 1663 samples with SARI were collected from 2015-2021, with a male-to-female ratio of 1.67:1 and a total virus detection rate of 38.5% (641/1663). The total detection rate of respiratory viruses decreased from 46.2% (2015-2019) to 36% (2020-2021) under the control measures for COVID-19 (P < 0.01). The three viruses with the highest detection rates changed from hRV, RSV, and hPIV-3 to hRV, RSV, and hCoV. The epidemic trend of hPIV-3 and hAdV was upside down before and after control measures(P < 0.01); however, the epidemic trend of RV and RSV had not changed from 2015 to 2021(P > 0.05). After the control measures, the detection rate of hPIV-3 decreased in all age groups, and the detection rate of hCoV increased in all except the 1 ~ 3 years old group. CONCLUSIONS: Implementing control measures for COVID-19 outbreak curbed the spread of respiratory viruses among children as a whole. However, the epidemic of RV and RSV was not affected by the COVID-19 control policy.


Assuntos
COVID-19 , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Vírus , Criança , Humanos , Masculino , Feminino , Lactente , Pré-Escolar , Pandemias , Conduta Expectante , COVID-19/epidemiologia , Infecções Respiratórias/epidemiologia , China/epidemiologia , Vírus da Parainfluenza 1 Humana
6.
Nature ; 551(7681): 498-502, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29143815

RESUMO

Aegilops tauschii is the diploid progenitor of the D genome of hexaploid wheat (Triticum aestivum, genomes AABBDD) and an important genetic resource for wheat. The large size and highly repetitive nature of the Ae. tauschii genome has until now precluded the development of a reference-quality genome sequence. Here we use an array of advanced technologies, including ordered-clone genome sequencing, whole-genome shotgun sequencing, and BioNano optical genome mapping, to generate a reference-quality genome sequence for Ae. tauschii ssp. strangulata accession AL8/78, which is closely related to the wheat D genome. We show that compared to other sequenced plant genomes, including a much larger conifer genome, the Ae. tauschii genome contains unprecedented amounts of very similar repeated sequences. Our genome comparisons reveal that the Ae. tauschii genome has a greater number of dispersed duplicated genes than other sequenced genomes and its chromosomes have been structurally evolving an order of magnitude faster than those of other grass genomes. The decay of colinearity with other grass genomes correlates with recombination rates along chromosomes. We propose that the vast amounts of very similar repeated sequences cause frequent errors in recombination and lead to gene duplications and structural chromosome changes that drive fast genome evolution.


Assuntos
Genoma de Planta , Filogenia , Poaceae/genética , Triticum/genética , Mapeamento Cromossômico , Diploide , Evolução Molecular , Duplicação Gênica , Genes de Plantas/genética , Genômica/normas , Poaceae/classificação , Recombinação Genética/genética , Análise de Sequência de DNA/normas , Triticum/classificação
7.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902116

RESUMO

The areca palm (Areca catechu L.) is one of the most economically important palm trees in tropical areas. To inform areca breeding programs, it is critical to characterize the genetic bases of the mechanisms that regulate areca fruit shape and to identify candidate genes related to fruit-shape traits. However, few previous studies have mined candidate genes associated with areca fruit shape. Here, the fruits produced by 137 areca germplasms were divided into three categories (spherical, oval, and columnar) based on the fruit shape index. A total of 45,094 high-quality single-nucleotide polymorphisms (SNPs) were identified across the 137 areca cultivars. Phylogenetic analysis clustered the areca cultivars into four subgroups. A genome-wide association study that used a mixed linear model identified the 200 loci that were the most significantly associated with fruit-shape traits in the germplasms. In addition, 86 candidate genes associated with areca fruit-shape traits were further mined. Among the proteins encoded by these candidate genes were UDP-glucosyltransferase 85A2, the ABA-responsive element binding factor GBF4, E3 ubiquitin-protein ligase SIAH1, and LRR receptor-like serine/threonine-protein kinase ERECTA. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that the gene that encoded UDP-glycosyltransferase, UGT85A2, was significantly upregulated in columnar fruits as compared to spherical and oval fruits. The identification of molecular markers that are closely related to fruit-shape traits not only provides genetic data for areca breeding, but it also provides new insights into the shape formation mechanisms of drupes.


Assuntos
Areca , Frutas , Areca/anatomia & histologia , Areca/classificação , Areca/genética , Frutas/anatomia & histologia , Frutas/classificação , Frutas/genética , Estudo de Associação Genômica Ampla , Fenótipo , Filogenia , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único
8.
Expert Rev Mol Med ; 24: e4, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35060846

RESUMO

Viruses completely rely on the energy and metabolic systems of host cells for life activities. Viral infections usually lead to cytopathic effects and host diseases. To date, there are still no specific clinical vaccines or drugs against most viral infections. Therefore, understanding the molecular and cellular mechanisms of viral infections is of great significance to prevent and treat viral diseases. A variety of viral infections are related to the p38 MAPK signalling pathway, and p38 is an important host factor in virus-infected cells. Here, we introduce the different signalling pathways of p38 activation and then summarise how different viruses induce p38 phosphorylation. Finally, we provide a general summary of the effect of p38 activation on virus replication. Our review provides integrated data on p38 activation and viral infections and describes the potential application of targeting p38 as an antiviral strategy.


Assuntos
Viroses , Proteínas Quinases p38 Ativadas por Mitógeno , Humanos , Sistema de Sinalização das MAP Quinases , Fosforilação , Replicação Viral , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Plant Biotechnol J ; 20(10): 1996-2005, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35767385

RESUMO

Potato (Solanum tuberosum L.) originated in the Andes and evolved its vegetative propagation strategy through short day-dependent tuber development. Herein, we present a high-quality, chromosome-scale reference genome sequence of a tetraploid potato cultivar. The total length of this genome assembly was 2.67 Gb, with scaffold N50 and contig N50 sizes of 46.24 and 2.19 Mb, respectively. In total, 1.69 Gb repetitive sequences were obtained through de novo annotation, and long terminal repeats were the main transposable elements. A total of 126 070 protein-coding genes were annotated, of which 125 077 (99.21%) were located on chromosomes. The 48 chromosomes were classified into four haplotypes. We annotated 31 506 homologous genes, including 5913 (18.77%) genes with four homologues, 11 103 (35.24%) with three homologues, 12 177 (38.65%) with two homologues and 2313 (7.34%) with one homologue. MLH3, MSH6/7 and RFC3, which are the genes involved in the mismatch repair pathway, were found to be significantly expanded in the tetraploid potato genome relative to the diploid potato genome. Genome-wide association analysis revealed that cytochrome P450, flavonoid synthesis, chalcone enzyme, glycosyl hydrolase and glycosyl transferase genes were significantly correlated with the flesh colours of potato tuber in 150 tetraploid potatoes. This study provides valuable insights into the highly heterozygous autotetraploid potato genome and may facilitate the development of tools for potato cultivar breeding and further studies on autotetraploid crops.


Assuntos
Chalconas , Solanum tuberosum , Elementos de DNA Transponíveis , Proteínas de Ligação a DNA/genética , Estudo de Associação Genômica Ampla , Hidrolases/genética , Melhoramento Vegetal , Solanum tuberosum/genética , Tetraploidia , Transferases/genética
10.
J Med Virol ; 94(6): 2653-2661, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873729

RESUMO

As an alternative mechanism for cap-dependent (m7GpppN) translation, internal ribosome entry site (IRES)-dependent translation has been observed in the 5' untranslated regions (5' UTR) and coding regions of a number of viral and eukaryotic mRNAs. In this study, a series of 5' terminal truncated structural protein genes that were fused with GFP was used to screen for potential IRESs, and IRESs were identified using a bicistronic luciferase vector or GFP expression vector possessing a hairpin structure. Our results revealed that a putative IRES was located between nt 1982 and 2281 in the VP3 coding region of the human rhinovirus 16 (HRV16) genomes. We also demonstrated that effective IRES-initiated protein expression in vitro did not occur through splicing sites or cryptic promoters. We confirmed that thapsigargin (TG), an inducer of endoplasmic reticulum stress (ERS), facilitated increased IRES activity in a dose-dependent manner. Additionally, the secondary structure of the IRES was predicted online using the RNAfold web server.


Assuntos
Sítios Internos de Entrada Ribossomal , Rhinovirus , Regiões 5' não Traduzidas , Humanos , Sítios Internos de Entrada Ribossomal/genética , Biossíntese de Proteínas , Rhinovirus/genética , Ribossomos/genética , Ribossomos/metabolismo
11.
FASEB J ; 35(2): e20995, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32910509

RESUMO

Virus entry into cells is the initial stage of infection and involves multiple steps, and interfering viral entry represents potential antiviral approaches. Ion channels are pore-forming membrane proteins controlling cellular ion homeostasis and regulating many physiological processes, but their roles during viral infection have rarely been explored. Here, the functional Kv1.3 ion channel was found to be expressed in human hepatic cells and tissues. The Kv1.3 was then revealed to restrict HCV entry via inhibiting endosome acidification-mediated viral membrane fusion. The Kv1.3 was also demonstrated to inhibit DENV and ZIKV with an endosome acidification-dependent entry, but have no effect on SeV with a neutral pH penetration. A Kv1.3 antagonist PAP-1 treatment accelerated animal death in ZIKV-infected Ifnar1-/- mice. Moreover, Kv1.3-deletion was found to promote weight loss and reduce survival rate in ZIKV-infected Kv1.3-/- mice. Altogether, the Kv1.3 ion channel behaves as a host factor restricting viral entry. These findings broaden understanding about ion channel biology.


Assuntos
Vírus da Dengue/fisiologia , Dengue/metabolismo , Hepacivirus/fisiologia , Hepatite C/metabolismo , Canal de Potássio Kv1.3/metabolismo , Infecções por Respirovirus/metabolismo , Vírus Sendai/fisiologia , Internalização do Vírus , Infecção por Zika virus/metabolismo , Zika virus/fisiologia , Animais , Chlorocebus aethiops , Dengue/virologia , Endossomos/metabolismo , Ficusina/farmacologia , Células HEK293 , Hepatite C/virologia , Humanos , Concentração de Íons de Hidrogênio , Canal de Potássio Kv1.3/antagonistas & inibidores , Canal de Potássio Kv1.3/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Respirovirus/virologia , Transfecção , Células Vero , Internalização do Vírus/efeitos dos fármacos , Infecção por Zika virus/virologia
12.
BMC Plant Biol ; 21(1): 376, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34399701

RESUMO

BACKGROUND: Glycolytic pathway is common in all plant organs, especially in oxygen-deficient tissues. Phosphofructokinase (PFK) is a rate-limiting enzyme in the glycolytic pathway and catalyses the phosphorylation of fructose-6-phosphate to fructose-1,6-bisphosphate. Cassava (M. esculenta) root is a huge storage organ with low amount of oxygen. However, less is known about the functions of PFK from M. esculenta (MePFK). We conducted a systematic analysis of MePFK genes to explore the function of the MePFK gene family under hypoxic stress. RESULTS: We identified 13 MePFK genes and characterised their sequence structure. The phylogenetic tree divided the 13 genes into two groups: nine were MePFKs and four were pyrophosphate-fructose-6-phosphate phosphotransferase (MePFPs). We confirmed by green fluorescent protein fusion protein expression that MePFK03 and MePFPA1 were localised in the chloroplast and cytoplasm, respectively. The expression profiles of the 13 MePFKs detected by quantitative reverse transcription polymerase chain reaction revealed that MePFK02, MePFK03, MePFPA1, MePFPB1 displayed higher expression in leaves, root and flower. The expression of MePFK03, MePFPA1 and MePFPB1 in tuber root increased gradually with plant growth. We confirmed that hypoxia occurred in the cassava root, and the concentration of oxygen was sharply decreasing from the outside to the inside root. The expression of MePFK03, MePFPA1 and MePFPB1 decreased with the decrease in the oxygen concentration in cassava root. Waterlogging stress treatment showed that the transcript level of PPi-dependent MePFP and MeSuSy were up-regulated remarkably and PPi-dependent glycolysis bypass was promoted. CONCLUSION: A systematic survey of phylogenetic relation, molecular characterisation, chromosomal and subcellular localisation and cis-element prediction of MePFKs were performed in cassava. The expression profiles of MePFKs in different development stages, organs and under waterlogging stress showed that MePFPA1 plays an important role during the growth and development of cassava. Combined with the transcriptional level of MeSuSy, we found that pyrophosphate (PPi)-dependent glycolysis bypass was promoted when cassava was under waterlogging stress. The results would provide insights for further studying the function of MePFKs under hypoxic stress.


Assuntos
Genoma de Planta , Manihot/enzimologia , Manihot/genética , Fosfofrutoquinases/genética , Fosfofrutoquinases/metabolismo , Cloroplastos/enzimologia , Mapeamento Cromossômico , Cromossomos de Plantas , Sequência Conservada , Citoplasma/enzimologia , Éxons , Flores/enzimologia , Íntrons , Família Multigênica , Oxigênio/metabolismo , Filogenia , Folhas de Planta/enzimologia , Raízes de Plantas/enzimologia , Regiões Promotoras Genéticas , Estresse Fisiológico/genética , Transcriptoma
13.
Arch Virol ; 166(12): 3373-3386, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34608523

RESUMO

Internal ribosome entry site (IRES)-dependent translation is a mechanism distinct from 5' cap-dependent translation. IRES elements are located mainly in the 5' untranslated regions (UTRs) of viral and eukaryotic mRNAs. However, IRESs are also found in the coding regions of some viral and eukaryotic genomes to initiate the translation of some functional truncated isoforms. Here, five putative IRES elements of human rhinovirus 16 (HRV16) were identified in the coding region of the nonstructural proteins P2 and P3 through fusion with green fluorescent protein (GFP) expression vectors and bicistronic vectors with a hairpin structure. These five putative IRESs were located at nucleotide positions 4286-4585, 5002-5126, 6245-6394, 6619-6718, and 6629-6778 in the HRV16 genome. The functionality of the five IRESs was confirmed by their ability to initiate GFP expression in vitro. This suggests that an alternative mechanism might be used to increase the efficiency of replication of HRV16.


Assuntos
Sítios Internos de Entrada Ribossomal , Rhinovirus , Regiões 5' não Traduzidas/genética , Humanos , Sítios Internos de Entrada Ribossomal/genética , Biossíntese de Proteínas , Rhinovirus/genética , Ribossomos/metabolismo
14.
J Biol Chem ; 294(1): 182-194, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30404919

RESUMO

Viral infections still threaten human health all over the world, and many people die from viral diseases every year. However, there are no effective vaccines or drugs for preventing or managing most viral diseases. Thus, the discovery and development of broad-spectrum antiviral agents remain urgent. Here, we expressed and purified a venom peptide, Ev37, from the scorpion Euscorpiops validus in a prokaryotic system. We found that rEv37 can inhibit dengue virus type 2 (DENV-2), hepatitis C virus (HCV), Zika virus (ZIKV), and herpes simplex virus type 1 (HSV-1) infections in a dose-dependent manner at noncytotoxic concentrations, but that it has no effect on Sendai virus (SeV) and adenovirus (AdV) infections in vitro Furthermore, rEv37 alkalized acidic organelles to prevent low pH-dependent fusion of the viral membrane-endosomal membrane, which mainly blocks the release of the viral genome from the endosome to the cytoplasm and then restricts viral late entry. Taken together, our results indicate that the scorpion venom peptide Ev37 is a broad-spectrum antiviral agent with a specific molecular mechanism against viruses undergoing low pH-dependent fusion activation during entry into host cells. We conclude that Ev37 is a potential candidate for development as an antiviral drug.


Assuntos
Citoplasma/metabolismo , Vírus da Dengue/fisiologia , Endossomos/metabolismo , Venenos de Escorpião/farmacologia , Escorpiões/química , Internalização do Vírus/efeitos dos fármacos , Adenoviridae/fisiologia , Animais , Chlorocebus aethiops , Citoplasma/virologia , Endossomos/virologia , Células HEK293 , Humanos , Fusão de Membrana/efeitos dos fármacos , Venenos de Escorpião/química , Vírus Sendai/fisiologia , Células Vero
15.
Nucleic Acids Res ; 46(4): 1777-1792, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29228330

RESUMO

Soil salinity is a significant threat to sustainable agricultural production worldwide. Plants must adjust their developmental and physiological processes to cope with salt stress. Although the capacity for adaptation ultimately depends on the genome, the exceptional versatility in gene regulation provided by the spliceosome-mediated alternative splicing (AS) is essential in these adaptive processes. However, the functions of the spliceosome in plant stress responses are poorly understood. Here, we report the in-depth characterization of a U1 spliceosomal protein, AtU1A, in controlling AS of pre-mRNAs under salt stress and salt stress tolerance in Arabidopsis thaliana. The atu1a mutant was hypersensitive to salt stress and accumulated more reactive oxygen species (ROS) than the wild-type under salt stress. RNA-seq analysis revealed that AtU1A regulates AS of many genes, presumably through modulating recognition of 5' splice sites. We showed that AtU1A is associated with the pre-mRNA of the ROS detoxification-related gene ACO1 and is necessary for the regulation of ACO1 AS. ACO1 is important for salt tolerance because ectopic expression of ACO1 in the atu1a mutant can partially rescue its salt hypersensitive phenotype. Our findings highlight the critical role of AtU1A as a regulator of pre-mRNA processing and salt tolerance in plants.


Assuntos
Processamento Alternativo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Fatores de Processamento de RNA/fisiologia , Tolerância ao Sal/genética , Transporte Ativo do Núcleo Celular , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutação , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Spliceossomos/metabolismo
16.
Genome ; 62(8): 563-569, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31158327

RESUMO

Heat shock transcription factors (Hsfs) are important regulators of biotic and abiotic stress responses in plants. Currently, the Hsf gene family is not well understood in cassava, an important tropical crop. In the present study, 32 MeHsf genes were identified from the cassava genome database, which were divided into three types based on functional domain and motif distribution analyses. Analysis of the differential expression of the genes belonging to the Hsf family in cassava was carried out based on published cassava transcriptome data from tissues/organs (leaf blade, leaf midvein, lateral buds, organized embryogenic structures, friable embryogenic callus, fibrous roots, storage roots, stem, petiole, shoot apical meristem, and root apical meristem) under abiotic stress (cold, drought) or biotic stress (mealybugs. cassava brown streak disease, cassava bacterial blight). The results show the expression diversity of cassava Hsfs genes in various tissues/organs. The transcript levels of MeHsfB3a, MeHsfA6a, MeHsfA2a, and MeHsfA9b were upregulated by abiotic and biotic stresses, such as cold, drought, cassava bacterial blight, cassava brown streak disease, and mealybugs, indicating their potential roles in mediating the response of cassava plants to environment stresses. Further interaction network and co-expression analyses suggests that Hsf genes may interact with Hsp70 family members to resist environmental stresses in cassava. These results provide valuable information for future studies of the functional characterization of the MeHsf gene family.


Assuntos
Resposta ao Choque Frio , Proteínas de Choque Térmico/genética , Manihot/genética , Proteínas de Plantas/genética , Transcriptoma , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/metabolismo , Manihot/microbiologia , Manihot/parasitologia , Proteínas de Plantas/metabolismo
17.
Plant Cell Rep ; 37(12): 1611-1624, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30099610

RESUMO

KEY MESSAGE: The dynamic alterations of the physiological and molecular processes in reproductive stage soybean indicated the dramatic impact caused by drought. Drought is a major abiotic stress that limits soybean (Glycine max) production. Most prior studies were focused on either model species or crops that are at their vegetative stages. It is known that the reproductive stage of soybean is more susceptible to drought. Therefore, an understanding on the responsive mechanisms during this stage will not only be important for basic plant physiology, but the knowledge can also be used for crop improvement via either genetic engineering or molecular breeding. In this study, physiological measurements and RNA-Seq analysis were used to dissect the metabolic alterations and molecular responses in the leaves of soybean grown at drought condition. Photosynthesis rate, stomata conductance, transpiration, and water potential were reduced. The activities of SOD and CAT were increased, while the activity of POD stayed unchanged. A total of 2771 annotated genes with at least twofold changes were found to be differentially expressed in the drought-stressed plants in which 1798 genes were upregulated and 973 were downregulated. Via KEGG analysis, these genes were assigned to multiple molecular pathways, including ABA biogenesis, compatible compound accumulation, secondary metabolite synthesis, fatty acid desaturation, plant transcription factors, etc. The large number of differentially expressed genes and the diverse pathways indicated that soybean employs complicated mechanisms to cope with drought. Some of the identified genes and pathways can be used as targets for genetic engineering or molecular breeding to improve drought resistance in soybean.


Assuntos
Secas , Glycine max/genética , Glycine max/fisiologia , Estresse Fisiológico/genética , Transcriptoma/genética , Antioxidantes/metabolismo , Vias Biossintéticas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Temperatura Alta , Folhas de Planta/genética , Folhas de Planta/fisiologia , Reprodução/genética
18.
Int J Mol Sci ; 19(9)2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30235813

RESUMO

ADP-glucose pyrophosphorylase (AGPase) is an important enzyme in the starch synthesis pathway. Its enzyme activity can determine the efficiency of starch biosynthesis. Cassava (Manihot esculenta Crantz) is the main staple crop worldwide and has a high starch content in its storage root. However, the inner regulatory mechanism of AGPase gene family is unclear. MePHD1; a plant homeodomain transcription factor; was isolated through a yeast one-hybrid screening using the promoter of ADP-glucose pyrophosphorylase small subunit1a (MeAGPS1a) as bait, and cassava storage root cDNA library as prey. This factor could bind to the MeAGPS1a promoter in vitro and in vivo, and its predicted binding region ranged from -400 bp to -201 bp, at the translation initiation site. The transcript level of MePHD1 could be induced by five plant hormones, and a temperature of 42 °C. This was down-regulated during the maturation process of the storage root. MePHD1 protein could repress the promoter activity of MeAGPS1a gene by a dual-luciferase assay; which indicated that MePHD1 is a negative regulator for the transcript level of MeAGPS1a gene.


Assuntos
Glucose-1-Fosfato Adenililtransferase/metabolismo , Proteínas de Homeodomínio/metabolismo , Manihot/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Glucose-1-Fosfato Adenililtransferase/genética , Manihot/metabolismo , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Ligação Proteica
19.
Molecules ; 22(8)2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28788075

RESUMO

The effects of sulfation of yeast glucans was optimized using response surface methodology. The degree of sulfation was evaluated from 0.11 to 0.75 using ion-chromatography. The structural characteristics of SYG (sulfation of yeast glucans) with a DS = 0.75 were determined using high-performance liquid chromatography/gel-permeation chromatography and finally by Fourier transform infrared spectrometry. The SYG had lower viscosity and greater solubility than the native yeast glucans, suggesting that the conformation of the SYG had significantly changed. The results also showed that SYG had a significantly greater antioxidant activity in vivo compared to native yeast glucans.


Assuntos
Antioxidantes/síntese química , Antioxidantes/farmacologia , Glucanos/síntese química , Glucanos/farmacologia , Saccharomyces cerevisiae/química , Sulfatos/química , Animais , Catalase/metabolismo , Glucanos/química , Linfócitos , Camundongos , Peso Molecular , Lesões Experimentais por Radiação/tratamento farmacológico , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Baço/citologia , Baço/efeitos dos fármacos , Baço/imunologia , Superóxido Dismutase/metabolismo , Viscosidade , beta-Glucanas/síntese química , beta-Glucanas/farmacologia
20.
BMC Genomics ; 17(1): 822, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27769171

RESUMO

BACKGROUND: Piper nigrum L., or "black pepper", is an economically important spice crop in tropical regions. Black pepper production is markedly affected by foot rot disease caused by Phytophthora capsici, and genetic improvement of black pepper is essential for combating foot rot diseases. However, little is known about the mechanism of anti- P. capsici in black pepper. The molecular mechanisms underlying foot rot susceptibility were studied by comparing transcriptome analysis between resistant (Piper flaviflorum) and susceptible (Piper nigrum cv. Reyin-1) black pepper species. RESULTS: 116,432 unigenes were acquired from six libraries (three replicates of resistant and susceptible black pepper samples), which were integrated by applying BLAST similarity searches and noted by adopting Kyoto Encyclopaedia of Genes and Gene Ontology (GO) genome orthology identifiers. The reference transcriptome was mapped using two sets of digital gene expression data. Using GO enrichment analysis for the differentially expressed genes, the majority of the genes associated with the phenylpropanoid biosynthesis pathway were identified in P. flaviflorum. In addition, the expression of genes revealed that after susceptible and resistant species were inoculated with P. capsici, the majority of genes incorporated in the phenylpropanoid metabolism pathway were up-regulated in both species. Among various treatments and organs, all the genes were up-regulated to a relatively high degree in resistant species. Phenylalanine ammonia lyase and peroxidase enzyme activity increased in susceptible and resistant species after inoculation with P. capsici, and the resistant species increased faster. The resistant plants retain their vascular structure in lignin revealed by histochemical analysis. CONCLUSIONS: Our data provide critical information regarding target genes and a technological basis for future studies of black pepper genetic improvements, including transgenic breeding.


Assuntos
Perfilação da Expressão Gênica , Interações Hospedeiro-Parasita , Phytophthora , Piper nigrum/fisiologia , Piper nigrum/parasitologia , Propanóis/metabolismo , Transcriptoma , Vias Biossintéticas , Biologia Computacional/métodos , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA