Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Angew Chem Int Ed Engl ; 61(25): e202108501, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35352449

RESUMO

Antimicrobial peptides (AMPs) preferentially permeate prokaryotic membranes via electrostatic binding and membrane remodeling. Such action is drastically suppressed by high salt due to increased electrostatic screening, thus it is puzzling how marine AMPs can possibly work. We examine as a model system, piscidin-1, a histidine-rich marine AMP, and show that ion-histidine interactions play unanticipated roles in membrane remodeling at high salt: Histidines can simultaneously hydrogen-bond to a phosphate and coordinate with an alkali metal ion to neutralize phosphate charge, thereby facilitating multidentate bonds to lipid headgroups in order to generate saddle-splay curvature, a prerequisite to pore formation. A comparison among Na+ , K+ , and Cs+ indicates that histidine-mediated salt tolerance is ion specific. We conclude that histidine plays a unique role in enabling protein/peptide-membrane interactions that occur in marine or other high-salt environment.


Assuntos
Peptídeos Antimicrobianos , Histidina , Histidina/química , Ligação de Hidrogênio , Bicamadas Lipídicas/química , Fosfatos , Tolerância ao Sal
2.
Bioconjug Chem ; 28(3): 793-804, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28248495

RESUMO

We design hybrid antibiotic peptide conjugates that can permeate membranes. Integration of multiple components with different functions into a single molecule is often problematic, due to competing chemical requirements for different functions and to mutual interference. By examining the structure of antimicrobial peptides (AMPs), we show that it is possible to design and synthesize membrane active antibiotic peptide conjugates (MAAPCs) that synergistically combine multiple forms of antimicrobial activity, resulting in unusually strong activity against persistent bacterial strains.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sequência de Aminoácidos , Antibacterianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Hemólise/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Permeabilidade , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo
3.
Nat Mater ; 14(7): 696-700, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26053762

RESUMO

Double-stranded DNA (dsDNA) can trigger the production of type I interferon (IFN) in plasmacytoid dendritic cells (pDCs) by binding to endosomal Toll-like receptor-9 (TLR9; refs 1-5). It is also known that the formation of DNA-antimicrobial peptide complexes can lead to autoimmune diseases via amplification of pDC activation. Here, by combining X-ray scattering, computer simulations, microscopy and measurements of pDC IFN production, we demonstrate that a broad range of antimicrobial peptides and other cationic molecules cause similar effects, and elucidate the criteria for amplification. TLR9 activation depends on both the inter-DNA spacing and the multiplicity of parallel DNA ligands in the self-assembled liquid-crystalline complex. Complexes with a grill-like arrangement of DNA at the optimum spacing can interlock with multiple TLR9 like a zipper, leading to multivalent electrostatic interactions that drastically amplify binding and thereby the immune response. Our results suggest that TLR9 activation and thus TLR9-mediated immune responses can be modulated deterministically.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , DNA/química , Interferon Tipo I/metabolismo , Receptor Toll-Like 9/metabolismo , Simulação por Computador , Ilhas de CpG , Cristalização , Células Dendríticas/citologia , Endossomos/metabolismo , Humanos , Interferon-alfa/metabolismo , Cristais Líquidos , Método de Monte Carlo , Oligonucleotídeos/química , Espalhamento de Radiação , Eletricidade Estática , Raios X , Catelicidinas
4.
Nat Commun ; 11(1): 1549, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32214098

RESUMO

Biofilm formation by Vibrio cholerae facilitates environmental persistence, and hyperinfectivity within the host. Biofilm formation is regulated by 3',5'-cyclic diguanylate (c-di-GMP) and requires production of the type IV mannose-sensitive hemagglutinin (MSHA) pilus. Here, we show that the MSHA pilus is a dynamic extendable and retractable system, and its activity is directly controlled by c-di-GMP. The interaction between c-di-GMP and the ATPase MshE promotes pilus extension, whereas low levels of c-di-GMP correlate with enhanced retraction. Loss of retraction facilitated by the ATPase PilT increases near-surface roaming motility, and impairs initial surface attachment. However, prolonged retraction upon surface attachment results in reduced MSHA-mediated surface anchoring and increased levels of detachment. Our results indicate that c-di-GMP directly controls MshE activity, thus regulating MSHA pilus extension and retraction dynamics, and modulating V. cholerae surface attachment and colonization.


Assuntos
GMP Cíclico/análogos & derivados , Fímbrias Bacterianas/metabolismo , Vibrio cholerae/fisiologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Aderência Bacteriana , Biofilmes/crescimento & desenvolvimento , Rastreamento de Células , GMP Cíclico/metabolismo , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/genética , Movimento , Vibrio cholerae/citologia , Vibrio cholerae/metabolismo
5.
mBio ; 10(2)2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015332

RESUMO

Vibrio cholerae biofilm formation and associated motility suppression are correlated with increased concentrations of cyclic diguanylate monophosphate (c-di-GMP), which are in turn driven by increased levels and/or activity of diguanylate cyclases (DGCs). To further our understanding of how c-di-GMP modulators in V. cholerae individually and collectively influence motility with cellular resolution, we determined how DGCs CdgD and CdgH impact intracellular c-di-GMP levels, motility, and biofilm formation. Our results indicated that CdgH strongly influences swim speed distributions; cells in which cdgH was deleted had higher average swim speeds than wild-type cells. Furthermore, our results suggest that CdgD, rather than CdgH, is the dominant DGC responsible for postattachment c-di-GMP production in biofilms. Lipopolysaccharide (LPS) biosynthesis genes were found to be extragenic bypass suppressors of the motility phenotypes of strains ΔcdgD and ΔcdgH We compared the motility regulation mechanism of the DGCs with that of Gmd, an LPS O-antigen biosynthesis protein, and discovered that comodulation of c-di-GMP levels by these motility effectors can be positively or negatively cooperative rather than simply additive. Taken together, these results suggest that different environmental and metabolic inputs orchestrate DGC responses of V. cholerae via c-di-GMP production and motility modulation.IMPORTANCE Cyclic diguanylate monophosphate (c-di-GMP) is a broadly conserved bacterial signaling molecule that affects motility, biofilm formation, and virulence. Although it has been known that high intracellular concentrations of c-di-GMP correlate with motility suppression and biofilm formation, how the 53 predicted c-di-GMP modulators in Vibrio cholerae collectively influence motility is not understood in detail. Here we used a combination of plate assays and single-cell tracking methods to correlate motility and biofilm formation outcomes with specific enzymes involved in c-di-GMP synthesis in Vibrio cholerae, the causative agent of the disease cholera.


Assuntos
Biofilmes/crescimento & desenvolvimento , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Vibrio cholerae/enzimologia , Vibrio cholerae/fisiologia , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Locomoção , Fósforo-Oxigênio Liases/genética , Vibrio cholerae/genética
6.
Acta Biomater ; 4(4): 844-51, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18325861

RESUMO

The topography and biocompatibility of zein layers adsorbed on patterned templates containing hydrophilic and hydrophobic regions were investigated. Nanopatterned templates consisting of hydrophilic lines on a hydrophobic background were drawn by dip-pen nanolithography (DPN) on gold-coated surfaces. 16-Mercaptohexadecanoic acid (COOH(CH(2))(15)SH, MHA) was used as primary ink to generate hydrophilic lines. Unpatterned surfaces were backfilled with 18-octadecanethiol (CH(3)(CH(2))(17)SH, ODT), which generated hydrophobic regions. Zein was allowed to adsorb on patterned surfaces from alcohol-water solutions. The topography of zein deposits was observed by atomic force microscopy (AFM). Height profiles from AFM measurements revealed that zein deposits followed closely the nanopatterned templates. The biocompatibility of zein layers assembled over hydrophilic/hydrophobic micropatterned templates was investigated. Templates containing MHA lines and ODT regions were generated by micro-contact printing (microCP). Mouse fibroblasts seeded on patterned zein layers proliferated on zein deposited over MHA lines, but not on zein over ODT. The experiment indicated that fibroblast cells were able to respond to variations in the underlying surface chemistry, transmitted by the different orientation adopted by zein on the different substrates. This property may be useful in controlling the spatial distribution of cells on patterned protein layers.


Assuntos
Materiais Biocompatíveis/metabolismo , Zeína/metabolismo , Adsorção , Animais , Contagem de Células , Proliferação de Células , Fibroblastos/citologia , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Microscopia de Força Atômica , Células NIH 3T3 , Nanotecnologia , Estrutura Terciária de Proteína , Zeína/química , Zeína/ultraestrutura
7.
ACS Cent Sci ; 3(11): 1156-1167, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29202017

RESUMO

Dnm1 and Fis1 are prototypical proteins that regulate yeast mitochondrial morphology by controlling fission, the dysregulation of which can result in developmental disorders and neurodegenerative diseases in humans. Loss of Dnm1 blocks the formation of fission complexes and leads to elongated mitochondria in the form of interconnected networks, while overproduction of Dnm1 results in excessive mitochondrial fragmentation. In the current model, Dnm1 is essentially a GTP hydrolysis-driven molecular motor that self-assembles into ring-like oligomeric structures that encircle and pinch the outer mitochondrial membrane at sites of fission. In this work, we use machine learning and synchrotron small-angle X-ray scattering (SAXS) to investigate whether the motor Dnm1 can synergistically facilitate mitochondrial fission by membrane remodeling. A support vector machine (SVM)-based classifier trained to detect sequences with membrane-restructuring activity identifies a helical Dnm1 domain capable of generating negative Gaussian curvature (NGC), the type of saddle-shaped local surface curvature found on scission necks during fission events. Furthermore, this domain is highly conserved in Dnm1 homologues with fission activity. Synchrotron SAXS measurements reveal that Dnm1 restructures membranes into phases rich in NGC, and is capable of inducing a fission neck with a diameter of 12.6 nm. Through in silico mutational analysis, we find that the helical Dnm1 domain is locally optimized for membrane curvature generation, and phylogenetic analysis suggests that dynamin superfamily proteins that are close relatives of human dynamin Dyn1 have evolved the capacity to restructure membranes via the induction of curvature mitochondrial fission. In addition, we observe that Fis1, an adaptor protein, is able to inhibit the pro-fission membrane activity of Dnm1, which points to the antagonistic roles of the two proteins in the regulation of mitochondrial fission.

8.
Protein Sci ; 15(9): 2062-70, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16882995

RESUMO

Theories of protein folding often consider contributions from three fundamental elements: loops, hydrophobic interactions, and secondary structures. The pathway of protein folding, the rate of folding, and the final folded structure should be predictable if the energetic contributions to folding of these fundamental factors were properly understood. alphatalpha is a helix-turn-helix peptide that was developed by de novo design to provide a model system for the study of these important elements of protein folding. Hydrogen exchange experiments were performed on selectively 15N-labeled alphatalpha and used to calculate the stability of hydrogen bonds within the peptide. The resulting pattern of hydrogen bond stability was analyzed using a version of Lifson-Roig model that was extended to include a statistical parameter for tertiary interactions. This parameter, x, represents the additional statistical weight conferred upon a helical state by a tertiary contact. The hydrogen exchange data is most closely fit by the XHC model with an x parameter of 9.25. Thus the statistical weight of a hydrophobic tertiary contact is approximately 5.8x the statistical weight for helix formation by alanine. The value for the x parameter derived from this study should provide a basis for the understanding of the relationship between hydrophobic cluster formation and secondary structure formation during the early stages of protein folding.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dobramento de Proteína , Estrutura Secundária de Proteína , Amidas/química , Previsões , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína
9.
J Mol Biol ; 322(4): 755-71, 2002 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-12270712

RESUMO

Gelsolin and other proteins in the villin/gelsolin family are regulated by polyphosphoinositides (PPIs), and manipulation of cellular PIP(2) levels alters the structure of the actin cytoskeleton coincident with the dissociation of gelsolin-actin complexes. This work explores the structure-function relationship of the gelsolin-PPI interaction. Circular dichroism experiments show that upon binding to PPIs, the PPI-sensitive N-terminal half of gelsolin undergoes significant secondary and tertiary structural changes that do not occur in the structurally homologous but PPI-insensitive C-terminal half. Secondary structure modeling algorithms predict an alpha-helical conformation for one of the gelsolin PPI-binding sites, P2, which differs from the conformation of P2 in the structure of gelsolin determined by X-ray crystallography, whereas structure prediction of the C-terminal homolog of P2 agrees well with the X-ray crystallography structure. Simulation of a change to helical conformation for P2 using molecular modeling indicates that such a structural transition will destabilize the F-actin-binding sites in domain 2. A hypothesis is proposed that PPIs initiate conformational changes at the PPI-binding site(s) that destabilize the protein structure, and subsequently disrupt the actin-binding sites. To further evaluate the role of P2 in the gelsolin-PPI interaction, a Ct mutant P2Ct is constructed by inserting P2 in place of its C-terminal homologous site. P2Ct interacts with actin in the same way as the wild-type protein. In contrast to Ct, however, P2Ct interacts strongly with PPIs, and its monomeric actin-binding activity becomes regulated by PPIs. It is concluded that the P2 site is sufficient for PPI-sensitivity in gelsolin. Furthermore, the P2 site in P2Ct and the actin-binding sites of Ct do not overlap, suggesting that PPIs regulate actin binding of P2Ct through induction of structural changes, rather than through direct competition.


Assuntos
Gelsolina/química , Fosfatidilinositol 4,5-Difosfato/química , Actinas/química , Sequência de Aminoácidos , Sítios de Ligação , Cátions Bivalentes , Gelsolina/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fosfatos de Fosfatidilinositol/química , Engenharia de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Sefarose
11.
J Invest Dermatol ; 135(6): 1581-1589, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25668237

RESUMO

Although antibiotics are a common treatment for acne, the difficulties inherent to effective antimicrobial penetration in sebum and selective antimicrobial action in the skin are compounded by increasing resistance of Propionibacterium acnes clinical isolates. To address these problems, we engineered Pentobra, a peptide-aminoglycoside molecule that has multiple mechanisms of antibacterial action and investigated whether it can be a potential candidate for the treatment of acne. Pentobra combines the potent ribosomal activity of aminoglycosides with the bacteria-selective membrane-permeabilizing abilities of antimicrobial peptides. Pentobra demonstrated potent and selective killing of P. acnes but not against human skin cells in vitro. In direct comparison, Pentobra demonstrated bactericidal activity and drastically outperformed free tobramycin (by 5-7 logs) against multiple P. acnes clinical strains. Moreover, electron microscopic studies showed that Pentobra had robust membrane activity, as treatment with Pentobra killed P. acnes cells and caused leakage of intracellular contents. Pentobra may also have potential anti-inflammatory effects as demonstrated by suppression of some P. acnes-induced chemokines. Importantly, the killing activity was maintained in sebaceous environments as Pentobra was bactericidal against clinical isolates in comedones extracts isolated from human donors. Our work demonstrates that equipping aminoglycosides with selective membrane activity is a viable approach for developing antibiotics against P. acnes that are effective in cutaneous environments.


Assuntos
Aminoglicosídeos/química , Antibacterianos/química , Peptídeos/química , Propionibacterium acnes/efeitos dos fármacos , Acne Vulgar/tratamento farmacológico , Membrana Celular/efeitos dos fármacos , Citocinas/metabolismo , Farmacorresistência Bacteriana , Ensaio de Imunoadsorção Enzimática , Humanos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica , Monócitos/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/microbiologia , Especificidade da Espécie , Células-Tronco , Tobramicina/química
12.
Proc Natl Acad Sci U S A ; 104(41): 15994-9, 2007 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-17911256

RESUMO

The aim for deterministic control of the interactions between macroions in aqueous media has motivated widespread experimental and theoretical work. Although it has been well established that like-charged macromolecules can aggregate under the influence of oppositely charged condensing agents, the specific conditions for the stability of such aggregates can only be determined empirically. We examine these conditions, which involve an interplay of electrostatic and osmotic effects, by using a well defined model system composed of F-actin, an anionic rod-like polyelectrolyte, and lysozyme, a cationic globular protein with a charge that can be genetically modified. The structure and stability of actin-lysozyme complexes for different lysozyme charge mutants and salt concentrations are examined by using synchrotron x-ray scattering and molecular dynamics simulations. We provide evidence that supports a structural transition from columnar arrangements of F-actin held together by arrays of lysozyme at the threefold interstitial sites of the actin sublattice to marginally stable complexes in which lysozyme resides at twofold bridging sites between actin. The reduced stability arises from strongly reduced partitioning of salt between the complex and the surrounding solution. Changes in the stability of actin-lysozyme complexes are of biomedical interest because their formation has been reported to contribute to the persistence of airway infections in cystic fibrosis by sequestering antimicrobials such as lysozyme. We present x-ray microscopy results that argue for the existence of actin-lysozyme complexes in cystic fibrosis sputum and demonstrate that, for a wide range of salt conditions, charge-reduced lysozyme is not sequestered in ordered complexes while retaining its bacterial killing activity.


Assuntos
Actinas/química , Actinas/metabolismo , Muramidase/química , Muramidase/metabolismo , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Bacteriófago T4/enzimologia , Bacteriófago T4/genética , Sítios de Ligação , Estabilidade Enzimática , Técnicas In Vitro , Modelos Moleculares , Complexos Multiproteicos , Muramidase/genética , Muramidase/farmacologia , Mutagênese Sítio-Dirigida , Pseudomonas aeruginosa/efeitos dos fármacos , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Salinidade , Espalhamento a Baixo Ângulo , Eletricidade Estática , Termodinâmica , Água , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA