Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 142(15): 1297-1311, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37339580

RESUMO

Anaplastic large cell lymphoma (ALCL), a subgroup of mature T-cell neoplasms with an aggressive clinical course, is characterized by elevated expression of CD30 and anaplastic cytology. To achieve a comprehensive understanding of the molecular characteristics of ALCL pathology and to identify therapeutic vulnerabilities, we applied genome-wide CRISPR library screenings to both anaplastic lymphoma kinase positive (ALK+) and primary cutaneous (pC) ALK- ALCLs and identified an unexpected role of the interleukin-1R (IL-1R) inflammatory pathway in supporting the viability of pC ALK- ALCL. Importantly, this pathway is activated by IL-1α in an autocrine manner, which is essential for the induction and maintenance of protumorigenic inflammatory responses in pC-ALCL cell lines and primary cases. Hyperactivation of the IL-1R pathway is promoted by the A20 loss-of-function mutation in the pC-ALCL lines we analyze and is regulated by the nonproteolytic protein ubiquitination network. Furthermore, the IL-1R pathway promotes JAK-STAT3 signaling activation in ALCLs lacking STAT3 gain-of-function mutation or ALK translocation and enhances the sensitivity of JAK inhibitors in these tumors in vitro and in vivo. Finally, the JAK2/IRAK1 dual inhibitor, pacritinib, exhibited strong activities against pC ALK- ALCL, where the IL-1R pathway is hyperactivated in the cell line and xenograft mouse model. Thus, our studies revealed critical insights into the essential roles of the IL-1R pathway in pC-ALCL and provided opportunities for developing novel therapeutic strategies.


Assuntos
Linfoma Anaplásico de Células Grandes , Linfoma Anaplásico Cutâneo Primário de Células Grandes , Neoplasias Cutâneas , Humanos , Animais , Camundongos , Linfoma Anaplásico de Células Grandes/tratamento farmacológico , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/patologia , Receptores Proteína Tirosina Quinases/genética , Quinase do Linfoma Anaplásico/genética , Interleucinas/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(46): 28980-28991, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139544

RESUMO

More than 70% of Epstein-Barr virus (EBV)-negative Hodgkin lymphoma (HL) cases display inactivation of TNFAIP3 (A20), a ubiquitin-editing protein that regulates nonproteolytic protein ubiquitination, indicating the significance of protein ubiquitination in HL pathogenesis. However, the precise mechanistic roles of A20 and the ubiquitination system remain largely unknown in this disease. Here, we performed high-throughput CRISPR screening using a ubiquitin regulator-focused single-guide RNA library in HL lines carrying either wild-type or mutant A20. Our CRISPR screening highlights the essential oncogenic role of the linear ubiquitin chain assembly complex (LUBAC) in HL lines, which overlaps with A20 inactivation status. Mechanistically, LUBAC promotes IKK/NF-κB activity and NEMO linear ubiquitination in A20 mutant HL cells, which is required for prosurvival genes and immunosuppressive molecule expression. As a tumor suppressor, A20 directly inhibits IKK activation and HL cell survival via its C-terminal linear-ubiquitin binding ZF7. Clinically, LUBAC activity is consistently elevated in most primary HL cases, and this is correlated with high NF-κB activity and low A20 expression. To further understand the complete mechanism of NF-κB activation in A20 mutant HL, we performed a specifically designed CD83-based NF-κB CRISPR screen which led us to identify TAK1 kinase as a major mediator for NF-κB activation in cells dependent on LUBAC, where the LUBAC-A20 axis regulates TAK1 and IKK complex formation. Finally, TAK1 inhibitor Takinib shows promising activity against HL in vitro and in a xenograft mouse model. Altogether, these findings provide strong support that targeting LUBAC or TAK1 could be attractive therapeutic strategies in A20 mutant HL.


Assuntos
Doença de Hodgkin/genética , Doença de Hodgkin/metabolismo , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Ubiquitina/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Xenoenxertos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , NF-kappa B/metabolismo , Ligação Proteica , Transdução de Sinais , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Ubiquitinação
3.
N Engl J Med ; 378(15): 1396-1407, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29641966

RESUMO

BACKGROUND: Diffuse large B-cell lymphomas (DLBCLs) are phenotypically and genetically heterogeneous. Gene-expression profiling has identified subgroups of DLBCL (activated B-cell-like [ABC], germinal-center B-cell-like [GCB], and unclassified) according to cell of origin that are associated with a differential response to chemotherapy and targeted agents. We sought to extend these findings by identifying genetic subtypes of DLBCL based on shared genomic abnormalities and to uncover therapeutic vulnerabilities based on tumor genetics. METHODS: We studied 574 DLBCL biopsy samples using exome and transcriptome sequencing, array-based DNA copy-number analysis, and targeted amplicon resequencing of 372 genes to identify genes with recurrent aberrations. We developed and implemented an algorithm to discover genetic subtypes based on the co-occurrence of genetic alterations. RESULTS: We identified four prominent genetic subtypes in DLBCL, termed MCD (based on the co-occurrence of MYD88L265P and CD79B mutations), BN2 (based on BCL6 fusions and NOTCH2 mutations), N1 (based on NOTCH1 mutations), and EZB (based on EZH2 mutations and BCL2 translocations). Genetic aberrations in multiple genes distinguished each genetic subtype from other DLBCLs. These subtypes differed phenotypically, as judged by differences in gene-expression signatures and responses to immunochemotherapy, with favorable survival in the BN2 and EZB subtypes and inferior outcomes in the MCD and N1 subtypes. Analysis of genetic pathways suggested that MCD and BN2 DLBCLs rely on "chronic active" B-cell receptor signaling that is amenable to therapeutic inhibition. CONCLUSIONS: We uncovered genetic subtypes of DLBCL with distinct genotypic, epigenetic, and clinical characteristics, providing a potential nosology for precision-medicine strategies in DLBCL. (Funded by the Intramural Research Program of the National Institutes of Health and others.).


Assuntos
Perfilação da Expressão Gênica , Heterogeneidade Genética , Linfoma Difuso de Grandes Células B/genética , Mutação , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biópsia , Epigênese Genética , Exoma , Genótipo , Humanos , Estimativa de Kaplan-Meier , Linfoma Difuso de Grandes Células B/classificação , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/mortalidade , Prognóstico , Análise de Sequência de DNA , Transcriptoma
4.
Blood ; 134(2): 171-185, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31151983

RESUMO

The success of programmed cell death protein 1 (PD-1)/PD-L1-based immunotherapy highlights the critical role played by PD-L1 in cancer progression and reveals an urgent need to develop new approaches to attenuate PD-L1 function by gaining insight into how its expression is controlled. Anaplastic lymphoma kinase (ALK)-positive anaplastic large-cell lymphoma (ALK+ ALCL) expresses a high level of PD-L1 as a result of the constitutive activation of multiple oncogenic signaling pathways downstream of ALK activity, making it an excellent model in which to define the signaling processes responsible for PD-L1 upregulation in tumor cells. Here, using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 library screening, we sought a comprehensive understanding of the molecular effectors required for PD-L1 regulation in ALK+ ALCL. Indeed, we determined that PD-L1 induction is dependent on the nucleophosmin-ALK oncoprotein activation of STAT3, as well as a signalosome containing GRB2/SOS1, which activates the MEK-ERK and PI3K-AKT signaling pathways. These signaling networks, through STAT3 and the GRB2/SOS1, ultimately induce PD-L1 expression through the action of transcription factors IRF4 and BATF3 on the enhancer region of the PD-L1 gene. IRF4 and BATF3 are essential for PD-L1 upregulation, and IRF4 expression is correlated with PD-L1 levels in primary ALK+ ALCL tissues. Targeting this oncogenic signaling pathway in ALK+ ALCL largely inhibited the ability of PD-L1-mediated tumor immune escape when cocultured with PD-1-positive T cells and natural killer cells. Thus, our identification of this previously unrecognized regulatory hub not only accelerates our understanding of the molecular circuitry that drives tumor immune escape but also provides novel opportunities to improve immunotherapeutic intervention strategies.


Assuntos
Antígeno B7-H1/biossíntese , Regulação Neoplásica da Expressão Gênica/fisiologia , Linfoma Anaplásico de Células Grandes/metabolismo , Transdução de Sinais/fisiologia , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Linfoma Anaplásico de Células Grandes/genética , Regulação para Cima
5.
Environ Toxicol ; 36(5): 800-810, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33347706

RESUMO

Skin cancer is the commonly found type, which contributes to 40% of whole cancer incidences worldwide. Dieckol is an active compound occurs in the marine algae with many biological benefits. In this exploration, we intended to investigate the therapeutic potency of dieckol against the 7,12-dimethylbenz(a)anthracene (DMBA)-triggered skin carcinogenesis in mice. The skin cancer was stimulated to the animals via injecting the 25 µg of DMBA in 100 µL of acetone in shaved dorsal portion along with the 30 mg/kg of dieckol supplementation for 25 week. The antioxidant enzymes and phase-I and -II detoxifying enzymes in the test animals were inspected via standard protocols. Pro-inflammatory markers (IL-6, IL-1ß, and TNF-α) level was examined via ELISA kits and the expression of inflammatory molecular markers like p-NF-ƙB, IƙBα and p-IƙBα were studied through western blotting. The expression status of pro- and anti-apoptotic proteins (p53, Bax, Bcl-2, caspase-3, caspase-9, COX-2, TGF-ß1) was investigated via real-time polymerase chain reaction (RT-PCR). Our results revealed that the 30 mg/kg of dieckol supplementation noticeably regained the body and liver weight and also diminished the tumor incidence in the DMBA-incited animals. Dieckol treatment exhibited an enhanced antioxidants (SOD, CAT, GPx, and GSH) and reduced phase-I enzymes Cyt-p450 and Cyt-b5 in the DMBA-induced animals. Dieckol also diminished the pro-inflammatory modulators like IL-6, IL-1ß and TNF-α. Western blotting result evidenced that the dieckol was inhibited the IƙB/NF-ƙB signaling pathway. RT-PCR study proved the enhanced expression of pro-apoptotic protein (p53, Bax, caspase-3 and -9) in the dieckol treated animals. Histological study also confirmed the therapeutic benefits of Dieckol. Altogether with these findings, it was clear that the dieckol has appreciably allayed the DMBA activated skin tumorigenesis in the mice and it could be a promising agent to treat the human skin cancer in future.


Assuntos
Antioxidantes , Neoplasias Cutâneas , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Antracenos , Benzofuranos , Biomarcadores , Carcinogênese , Camundongos , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/prevenção & controle
6.
Nature ; 516(7530): 254-8, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25274307

RESUMO

Germinal centre B-cell-like diffuse large B-cell lymphoma (GCB-DLBCL) is a common malignancy, yet the signalling pathways that are deregulated and the factors leading to its systemic dissemination are poorly defined. Work in mice showed that sphingosine-1-phosphate receptor-2 (S1PR2), a Gα12 and Gα13 coupled receptor, promotes growth regulation and local confinement of germinal centre B cells. Recent deep sequencing studies of GCB-DLBCL have revealed mutations in many genes in this cancer, including in GNA13 (encoding Gα13) and S1PR2 (refs 5,6, 7). Here we show, using in vitro and in vivo assays, that GCB-DLBCL-associated mutations occurring in S1PR2 frequently disrupt the receptor's Akt and migration inhibitory functions. Gα13-deficient mouse germinal centre B cells and human GCB-DLBCL cells were unable to suppress pAkt and migration in response to S1P, and Gα13-deficient mice developed germinal centre B-cell-derived lymphoma. Germinal centre B cells, unlike most lymphocytes, are tightly confined in lymphoid organs and do not recirculate. Remarkably, deficiency in Gα13, but not S1PR2, led to germinal centre B-cell dissemination into lymph and blood. GCB-DLBCL cell lines frequently carried mutations in the Gα13 effector ARHGEF1, and Arhgef1 deficiency also led to germinal centre B-cell dissemination. The incomplete phenocopy of Gα13- and S1PR2 deficiency led us to discover that P2RY8, an orphan receptor that is mutated in GCB-DLBCL and another germinal centre B-cell-derived malignancy, Burkitt's lymphoma, also represses germinal centre B-cell growth and promotes confinement via Gα13. These findings identify a Gα13-dependent pathway that exerts dual actions in suppressing growth and blocking dissemination of germinal centre B cells that is frequently disrupted in germinal centre B-cell-derived lymphoma.


Assuntos
Linfócitos B/metabolismo , Linfócitos B/patologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Centro Germinativo/patologia , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Transdução de Sinais , Animais , Sangue/imunologia , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Humanos , Linfa/citologia , Linfoma Difuso de Grandes Células B/genética , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/metabolismo , Receptores de Lisoesfingolipídeo/deficiência , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Receptores Purinérgicos P2Y/genética , Receptores Purinérgicos P2Y/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/deficiência , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Receptores de Esfingosina-1-Fosfato
7.
Proc Natl Acad Sci U S A ; 114(15): 3975-3980, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28356514

RESUMO

Activating Janus kinase (JAK) and signal transducer and activator of transcription (STAT) mutations have been discovered in many T-cell malignancies, including anaplastic lymphoma kinase (ALK)- anaplastic large cell lymphomas (ALCLs). However, such mutations occur in a minority of patients. To investigate the clinical application of targeting JAK for ALK- ALCL, we treated ALK- cell lines of various histological origins with JAK inhibitors. Interestingly, most exogenous cytokine-independent cell lines responded to JAK inhibition regardless of JAK mutation status. JAK inhibitor sensitivity correlated with the STAT3 phosphorylation status of tumor cells. Using retroviral shRNA knockdown, we have demonstrated that these JAK inhibitor-sensitive cells are dependent on both JAK1 and STAT3 for survival. JAK1 and STAT3 gain-of-function mutations were found in some, but not all, JAK inhibitor-sensitive cells. Moreover, the mutations alone cannot explain the JAK1/STAT3 dependency, given that wild-type JAK1 or STAT3 was sufficient to promote cell survival in the cells that had either JAK1or STAT3 mutations. To investigate whether other mechanisms were involved, we knocked down upstream receptors GP130 or IL-2Rγ. Knockdown of GP130 or IL-2Rγ induced cell death in selected JAK inhibitor-sensitive cells. High expression levels of cytokines, including IL-6, were demonstrated in cell lines as well as in primary ALK- ALCL tumors. Finally, ruxolitinib, a JAK1/2 inhibitor, was effective in vivo in a xenograft ALK- ALCL model. Our data suggest that cytokine receptor signaling is required for tumor cell survival in diverse forms of ALK- ALCL, even in the presence of JAK1/STAT3 mutations. Therefore, JAK inhibitor therapy might benefit patients with ALK- ALCL who are phosphorylated STAT3.


Assuntos
Janus Quinase 1/genética , Linfoma Anaplásico de Células Grandes/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Citocinas/metabolismo , Fator de Transcrição STAT3/genética , Quinase do Linfoma Anaplásico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Citocinas/genética , Citocinas/metabolismo , Humanos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Linfoma Anaplásico de Células Grandes/tratamento farmacológico , Linfoma Anaplásico de Células Grandes/genética , Camundongos , Nitrilas , Fosforilação , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Receptores Proteína Tirosina Quinases/genética , Receptores de Citocinas/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
BMC Bioinformatics ; 20(Suppl 2): 101, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30871461

RESUMO

BACKGROUND: Reference genome selection is a prerequisite for successful analysis of next generation sequencing (NGS) data. Current practice employs one of the two most recent human reference genome versions: HG19 or HG38. To date, the impact of genome version on SNV identification has not been rigorously assessed. METHODS: We conducted analysis comparing the SNVs identified based on HG19 vs HG38, leveraging whole genome sequencing (WGS) data from the genome-in-a-bottle (GIAB) project. First, SNVs were called using 26 different bioinformatics pipelines with either HG19 or HG38. Next, two tools were used to convert the called SNVs between HG19 and HG38. Lastly we calculated conversion rates, analyzed discordant rates between SNVs called with HG19 or HG38, and characterized the discordant SNVs. RESULTS: The conversion rates from HG38 to HG19 (average 95%) were lower than the conversion rates from HG19 to HG38 (average 99%). The conversion rates varied slightly among the various calling pipelines. Around 1.5% SNVs were discordantly converted between HG19 or HG38. The conversions from HG38 to HG19 had more SNVs which failed conversion and more discordant SNVs than the opposite conversion (HG19 to HG38). Most of the discordant SNVs had low read depth, were low confidence SNVs as defined by GIAB, and/or were predominated by G/C alleles (52% observed versus 42% expected). CONCLUSION: A significant number of SNVs could not be converted between HG19 and HG38. Based on careful review of our comparisons, we recommend HG38 (the newer version) for NGS SNV analysis. To summarize, our findings suggest caution when translating identified SNVs between different versions of the human reference genome.


Assuntos
Genoma Humano/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos
10.
BMC Genomics ; 20(1): 706, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31510940

RESUMO

BACKGROUND: Accurate de novo genome assembly has become reality with the advancements in sequencing technology. With the ever-increasing number of de novo genome assembly tools, assessing the quality of assemblies has become of great importance in genome research. Although many quality metrics have been proposed and software tools for calculating those metrics have been developed, the existing tools do not produce a unified measure to reflect the overall quality of an assembly. RESULTS: To address this issue, we developed the de novo Assembly Quality Evaluation Tool (dnAQET) that generates a unified metric for benchmarking the quality assessment of assemblies. Our framework first calculates individual quality scores for the scaffolds/contigs of an assembly by aligning them to a reference genome. Next, it computes a quality score for the assembly using its overall reference genome coverage, the quality score distribution of its scaffolds and the redundancy identified in it. Using synthetic assemblies randomly generated from the latest human genome build, various builds of the reference genomes for five organisms and six de novo assemblies for sample NA24385, we tested dnAQET to assess its capability for benchmarking quality evaluation of genome assemblies. For synthetic data, our quality score increased with decreasing number of misassemblies and redundancy and increasing average contig length and coverage, as expected. For genome builds, dnAQET quality score calculated for a more recent reference genome was better than the score for an older version. To compare with some of the most frequently used measures, 13 other quality measures were calculated. The quality score from dnAQET was found to be better than all other measures in terms of consistency with the known quality of the reference genomes, indicating that dnAQET is reliable for benchmarking quality assessment of de novo genome assemblies. CONCLUSIONS: The dnAQET is a scalable framework designed to evaluate a de novo genome assembly based on the aggregated quality of its scaffolds (or contigs). Our results demonstrated that dnAQET quality score is reliable for benchmarking quality assessment of genome assemblies. The dnQAET can help researchers to identify the most suitable assembly tools and to select high quality assemblies generated.


Assuntos
Genômica/métodos , Benchmarking , Mapeamento de Sequências Contíguas , Software
11.
Artigo em Inglês | MEDLINE | ID: mdl-31305208

RESUMO

Environmental exposures to hazardous chemicals are associated with a variety of human diseases and disorders, including cancers. Phase I metabolic activation and detoxification reactions catalyzed by cytochrome P450 enzymes (CYPs) affect the toxicities of many xenobiotic compounds. Proper regulation of CYP expression influences their biological effects. Noncoding RNAs (ncRNAs) are involved in regulating CYP expression, and ncRNA expression is regulated in response to environmental chemicals. The mechanistic interactions between ncRNAs and CYPs associated with the toxicity and carcinogenicity of environmental chemicals are described in this review, focusing on microRNA-dependent CYP regulation. The role of long noncoding RNAs in regulating CYP expression is also presented and new avenues of research concerning this regulatory mechanism are described.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Exposição Ambiental , Epigênese Genética , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Xenobióticos/toxicidade , Carcinogênese , Ecotoxicologia , Humanos
12.
Proc Natl Acad Sci U S A ; 113(46): E7260-E7267, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27799566

RESUMO

Janus kinases (JAKs) classically signal by activating STAT transcription factors but can also regulate gene expression by epigenetically phosphorylating histone H3 on tyrosine 41 (H3Y41-P). In diffuse large B-cell lymphomas (DLBCLs), JAK signaling is a feature of the activated B-cell (ABC) subtype and is triggered by autocrine production of IL-6 and IL-10. Whether this signaling involves STAT activation, epigenetic modification of chromatin, or both mechanisms is unknown. Here we use genetic and pharmacological inhibition to show that JAK1 signaling sustains the survival of ABC DLBCL cells. Whereas STAT3 contributed to the survival of ABC DLBCL cell lines, forced STAT3 activity could not protect these cells from death following JAK1 inhibition, suggesting epigenetic JAK1 action. JAK1 regulated the expression of nearly 3,000 genes in ABC DLBCL cells, and the chromatin surrounding many of these genes was modified by H3Y41-P marks that were diminished by JAK1 inhibition. These JAK1 epigenetic target genes encode important regulators of ABC DLBCL proliferation and survival, including IRF4, MYD88, and MYC. A small molecule JAK1 inhibitor cooperated with the BTK inhibitor ibrutinib in reducing IRF4 levels and acted synergistically to kill ABC DLBCL cells, suggesting that this combination should be evaluated in clinical trials.


Assuntos
Janus Quinase 1/genética , Linfoma Difuso de Grandes Células B/genética , Apoptose , Linhagem Celular Tumoral , Epigênese Genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Janus Quinase 1/antagonistas & inibidores , Fator de Transcrição STAT3/genética
13.
Proc Natl Acad Sci U S A ; 113(14): E2039-46, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26993806

RESUMO

The requirement for the B-cell transcription factor OCT2 (octamer-binding protein 2, encoded by Pou2f2) in germinal center B cells has proved controversial. Here, we report that germinal center B cells are formed normally after depletion of OCT2 in a conditional knockout mouse, but their proliferation is reduced and in vivo differentiation to antibody-secreting plasma cells is blocked. This finding led us to examine the role of OCT2 in germinal center-derived lymphomas. shRNA knockdown showed that almost all diffuse large B-cell lymphoma (DLBCL) cell lines are addicted to the expression of OCT2 and its coactivator OCA-B. Genome-wide chromatin immunoprecipitation (ChIP) analysis and gene-expression profiling revealed the broad transcriptional program regulated by OCT2 that includes the expression of STAT3, IL-10, ELL2, XBP1, MYC, TERT, and ADA. Importantly, genetic alteration of OCT2 is not a requirement for cellular addiction in DLBCL. However, we detected amplifications of the POU2F2 locus in DLBCL tumor biopsies and a recurrent mutation of threonine 223 in the DNA-binding domain of OCT2. This neomorphic mutation subtly alters the DNA-binding preference of OCT2, leading to the transactivation of noncanonical target genes including HIF1a and FCRL3 Finally, by introducing mutations designed to disrupt the OCT2-OCA-B interface, we reveal a requirement for this protein-protein interface that ultimately might be exploited therapeutically. Our findings, combined with the predominantly B-cell-restricted expression of OCT2 and the absence of a systemic phenotype in our knockout mice, suggest that an OCT2-targeted therapeutic strategy would be efficacious in both major subtypes of DLBCL while avoiding systemic toxicity.


Assuntos
Linfócitos B/citologia , Diferenciação Celular , Sobrevivência Celular , Linfoma Difuso de Grandes Células B/patologia , Proteínas de Transporte de Cátions Orgânicos/fisiologia , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Knockout , Proteínas de Transporte de Cátions Orgânicos/genética , Transportador 2 de Cátion Orgânico
14.
Gut ; 67(3): 521-533, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28634199

RESUMO

OBJECTIVE: To elucidate the genetic architecture of gene expression in pancreatic tissues. DESIGN: We performed expression quantitative trait locus (eQTL) analysis in histologically normal pancreatic tissue samples (n=95) using RNA sequencing and the corresponding 1000 genomes imputed germline genotypes. Data from pancreatic tumour-derived tissue samples (n=115) from The Cancer Genome Atlas were included for comparison. RESULTS: We identified 38 615 cis-eQTLs (in 484 genes) in histologically normal tissues and 39 713 cis-eQTL (in 237 genes) in tumour-derived tissues (false discovery rate <0.1), with the strongest effects seen near transcriptional start sites. Approximately 23% and 42% of genes with significant cis-eQTLs appeared to be specific for tumour-derived and normal-derived tissues, respectively. Significant enrichment of cis-eQTL variants was noted in non-coding regulatory regions, in particular for pancreatic tissues (1.53-fold to 3.12-fold, p≤0.0001), indicating tissue-specific functional relevance. A common pancreatic cancer risk locus on 9q34.2 (rs687289) was associated with ABO expression in histologically normal (p=5.8×10-8) and tumour-derived (p=8.3×10-5) tissues. The high linkage disequilibrium between this variant and the O blood group generating deletion variant in ABO (exon 6) suggested that nonsense-mediated decay (NMD) of the 'O' mRNA might explain this finding. However, knockdown of crucial NMD regulators did not influence decay of the ABO 'O' mRNA, indicating that a gene regulatory element influenced by pancreatic cancer risk alleles may underlie the eQTL. CONCLUSIONS: We have identified cis-eQTLs representing potential functional regulatory variants in the pancreas and generated a rich data set for further studies on gene expression and its regulation in pancreatic tissues.


Assuntos
Sistema ABO de Grupos Sanguíneos/genética , Expressão Gênica , Pâncreas , Neoplasias Pancreáticas/genética , Locos de Características Quantitativas , RNA Neoplásico/análise , Transcriptoma , Alelos , Cromossomos Humanos Par 9 , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Degradação do RNAm Mediada por Códon sem Sentido , Polimorfismo de Nucleotídeo Único , Sequências Reguladoras de Ácido Nucleico , Análise de Sequência de RNA
15.
Mol Carcinog ; 57(8): 978-987, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29603380

RESUMO

Non-alcoholic steatohepatitis (NASH) is becoming one of the major causes of hepatocellular carcinoma (HCC) in the United States and Western countries; however, the molecular mechanisms associated with NASH-related liver carcinogenesis are not well understood. In the present study, we investigated cancer-associated chromatin alterations using a model that resembles the development of NASH-related HCC in humans. An assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq) identified 1677 tumor-specific chromatin-accessible regions in NASH-derived HCC tissue samples. Using a combined analysis of ATAC-seq and global gene expression data, we identified 199 differentially expressed genes, 139 up-regulated and 60 down-regulated. Interestingly, 15 of the 139 up-regulated genes had accessible chromatin sites within 5 Kb of the transcription start site (TSS), including Apoa4, Anxa2, Serpine1, Igfbp1, and Tubb2a, genes critically involved in the development of NASH and HCC. We demonstrate that the mechanism for the up-regulation of these genes is associated with the enrichment of chromatin-accessible regions by transcription factors, especially NFATC2, and histone H3K4me1 and H3K27ac gene transcription-activating marks. These data underline the important role of chromatin accessibility perturbations in reshaping of the chromatin landscape in NASH-related HCC.


Assuntos
Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/genética , Cromatina/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Animais , Metilação de DNA , Epigênese Genética , Código das Histonas , Humanos , Masculino , Camundongos Endogâmicos C57BL
16.
Nature ; 490(7418): 116-20, 2012 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-22885699

RESUMO

Burkitt's lymphoma (BL) can often be cured by intensive chemotherapy, but the toxicity of such therapy precludes its use in the elderly and in patients with endemic BL in developing countries, necessitating new strategies. The normal germinal centre B cell is the presumed cell of origin for both BL and diffuse large B-cell lymphoma (DLBCL), yet gene expression analysis suggests that these malignancies may use different oncogenic pathways. BL is subdivided into a sporadic subtype that is diagnosed in developed countries, the Epstein-Barr-virus-associated endemic subtype, and an HIV-associated subtype, but it is unclear whether these subtypes use similar or divergent oncogenic mechanisms. Here we used high-throughput RNA sequencing and RNA interference screening to discover essential regulatory pathways in BL that cooperate with MYC, the defining oncogene of this cancer. In 70% of sporadic BL cases, mutations affecting the transcription factor TCF3 (E2A) or its negative regulator ID3 fostered TCF3 dependency. TCF3 activated the pro-survival phosphatidylinositol-3-OH kinase pathway in BL, in part by augmenting tonic B-cell receptor signalling. In 38% of sporadic BL cases, oncogenic CCND3 mutations produced highly stable cyclin D3 isoforms that drive cell cycle progression. These findings suggest opportunities to improve therapy for patients with BL.


Assuntos
Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/genética , Genômica , Terapia de Alvo Molecular , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patologia , Ciclo Celular , Ciclina D3/genética , Ciclina D3/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Genes myc/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Interferência de RNA , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais
17.
Arch Toxicol ; 92(2): 845-858, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29067470

RESUMO

Acetaminophen (APAP) overdose is the leading cause of acute liver failure. Yet the mechanisms underlying adaptive tolerance toward APAP-induced liver injury are not fully understood. To better understand molecular mechanisms contributing to adaptive tolerance to APAP is an underpinning foundation for APAP-related precision medicine. In the current study, the mRNA and microRNA (miRNA) expression profiles derived from next generation sequencing data for APAP-treated (5 and 10 mM) HepaRG cells and controls were analyzed systematically. Putative miRNAs targeting key dysregulated genes involved in APAP hepatotoxicity were selected using in silico prediction algorithms, un-biased gene ontology, and network analyses. Luciferase reporter assays, RNA electrophoresis mobility shift assays, and miRNA pull-down assays were performed to investigate the role of miRNAs affecting the expression of dysregulated genes. Levels of selected miRNAs were measured in serum samples obtained from children with APAP overdose (58.6-559.4 mg/kg) and from healthy controls. As results, 2758 differentially expressed genes and 47 miRNAs were identified. Four of these miRNAs (hsa-miR-224-5p, hsa-miR-320a, hsa-miR-449a, and hsa-miR-877-5p) suppressed drug metabolizing enzyme (DME) levels involved in APAP-induced liver injury by downregulating HNF1A, HNF4A and NR1I2 expression. Exogenous transfection of these miRNAs into HepaRG cells effectively rescued them from APAP toxicity, as indicated by decreased alanine aminotransferase levels. Importantly, hsa-miR-320a and hsa-miR-877-5p levels were significantly elevated in serum samples obtained from children with APAP overdose compared to health controls. Collectively, these data indicate that hsa-miR-224-5p, hsa-miR-320a, hsa-miR-449a, and hsa-miR-877-5p suppress DME expression involved in APAP-induced hepatotoxicity and they contribute to an adaptive response in hepatocytes.


Assuntos
Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/genética , Overdose de Drogas/genética , Hepatócitos/efeitos dos fármacos , MicroRNAs/genética , Linhagem Celular , Criança , Feminino , Células HEK293 , Humanos , Masculino , MicroRNAs/sangue , Transfecção
18.
Proc Natl Acad Sci U S A ; 112(44): 13447-54, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26483459

RESUMO

The activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) relies on chronic active B-cell receptor (BCR) signaling. BCR pathway inhibitors induce remissions in a subset of ABC DLBCL patients. BCR microclusters on the surface of ABC cells resemble those generated following antigen engagement of normal B cells. We speculated that binding of lymphoma BCRs to self-antigens initiates and maintains chronic active BCR signaling in ABC DLBCL. To assess whether antigenic engagement of the BCR is required for the ongoing survival of ABC cells, we developed isogenic ABC cells that differed solely with respect to the IgH V region of their BCRs. In competitive assays with wild-type cells, substitution of a heterologous V region impaired the survival of three ABC lines. The viability of one VH4-34(+) ABC line and the ability of its BCR to bind to its own cell surface depended on V region residues that mediate the intrinsic autoreactivity of VH4-34 to self-glycoproteins. The BCR of another ABC line reacted with self-antigens in apoptotic debris, and the survival of a third ABC line was sustained by reactivity of its BCR to an idiotypic epitope in its own V region. Hence, a diverse set of self-antigens is responsible for maintaining the malignant survival of ABC DLBCL cells. IgH V regions used by the BCRs of ABC DLBCL biopsy samples varied in their ability to sustain survival of these ABC lines, suggesting a screening procedure to identify patients who might benefit from BCR pathway inhibition.


Assuntos
Autoantígenos/metabolismo , Linfócitos B/metabolismo , Linfoma Difuso de Grandes Células B/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Sequência de Aminoácidos , Apoptose/genética , Linfócitos B/patologia , Western Blotting , Antígenos CD79/genética , Antígenos CD79/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Citometria de Fluxo , Humanos , Ativação Linfocitária/genética , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Dados de Sequência Molecular , Mutação , Ligação Proteica , Interferência de RNA , Receptores de Antígenos de Linfócitos B/genética , Transdução de Sinais/genética
19.
Nature ; 470(7332): 115-9, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-21179087

RESUMO

The activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) remains the least curable form of this malignancy despite recent advances in therapy. Constitutive nuclear factor (NF)-κB and JAK kinase signalling promotes malignant cell survival in these lymphomas, but the genetic basis for this signalling is incompletely understood. Here we describe the dependence of ABC DLBCLs on MYD88, an adaptor protein that mediates toll and interleukin (IL)-1 receptor signalling, and the discovery of highly recurrent oncogenic mutations affecting MYD88 in ABC DLBCL tumours. RNA interference screening revealed that MYD88 and the associated kinases IRAK1 and IRAK4 are essential for ABC DLBCL survival. High-throughput RNA resequencing uncovered MYD88 mutations in ABC DLBCL lines. Notably, 29% of ABC DLBCL tumours harboured the same amino acid substitution, L265P, in the MYD88 Toll/IL-1 receptor (TIR) domain at an evolutionarily invariant residue in its hydrophobic core. This mutation was rare or absent in other DLBCL subtypes and Burkitt's lymphoma, but was observed in 9% of mucosa-associated lymphoid tissue lymphomas. At a lower frequency, additional mutations were observed in the MYD88 TIR domain, occurring in both the ABC and germinal centre B-cell-like (GCB) DLBCL subtypes. Survival of ABC DLBCL cells bearing the L265P mutation was sustained by the mutant but not the wild-type MYD88 isoform, demonstrating that L265P is a gain-of-function driver mutation. The L265P mutant promoted cell survival by spontaneously assembling a protein complex containing IRAK1 and IRAK4, leading to IRAK4 kinase activity, IRAK1 phosphorylation, NF-κB signalling, JAK kinase activation of STAT3, and secretion of IL-6, IL-10 and interferon-ß. Hence, the MYD88 signalling pathway is integral to the pathogenesis of ABC DLBCL, supporting the development of inhibitors of IRAK4 kinase and other components of this pathway for the treatment of tumours bearing oncogenic MYD88 mutations.


Assuntos
Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Mutação/genética , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Oncogenes/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Linfoma de Burkitt/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Citocinas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Interações Hidrofóbicas e Hidrofílicas , Quinases Associadas a Receptores de Interleucina-1/biossíntese , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Janus Quinases/metabolismo , Linfoma de Zona Marginal Tipo Células B/genética , Linfoma Difuso de Grandes Células B/classificação , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fator 88 de Diferenciação Mieloide/química , NF-kappa B/metabolismo , Fosforilação , Estrutura Terciária de Proteína , Interferência de RNA , Receptores de Interleucina-1/metabolismo , Fator de Transcrição STAT3/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Receptores Toll-Like/metabolismo
20.
Proc Natl Acad Sci U S A ; 111(31): 11365-70, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25049379

RESUMO

In the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL), NF-κB activity is essential for viability of the malignant cells and is sustained by constitutive activity of IκB kinase (IKK) in the cytoplasm. Here, we report an unexpected role for the bromodomain and extraterminal domain (BET) proteins BRD2 and BRD4 in maintaining oncogenic IKK activity in ABC DLBCL. IKK activity was reduced by small molecules targeting BET proteins as well as by genetic knockdown of BRD2 and BRD4 expression, thereby inhibiting downstream NF-κB-driven transcriptional programs and killing ABC DLBCL cells. Using a high-throughput platform to screen for drug-drug synergy, we observed that the BET inhibitor JQ1 combined favorably with multiple drugs targeting B-cell receptor signaling, one pathway that activates IKK in ABC DLBCL. The BTK kinase inhibitor ibrutinib, which is in clinical development for the treatment of ABC DLBCL, synergized strongly with BET inhibitors in killing ABC DLBCL cells in vitro and in a xenograft mouse model. These findings provide a mechanistic basis for the clinical development of BET protein inhibitors in ABC DLBCL, particularly in combination with other modulators of oncogenic IKK signaling.


Assuntos
Quinase I-kappa B/antagonistas & inibidores , Linfoma Difuso de Grandes Células B/enzimologia , Proteínas Nucleares/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Adenina/análogos & derivados , Animais , Azepinas/farmacologia , Azepinas/toxicidade , Proteínas de Ciclo Celular , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Sinergismo Farmacológico , Humanos , Quinase I-kappa B/química , Quinase I-kappa B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Camundongos , Camundongos SCID , Proteínas Nucleares/metabolismo , Piperidinas , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Pirazóis/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Triazóis/farmacologia , Triazóis/toxicidade , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA