Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Environ Manage ; 325(Pt A): 116503, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36274306

RESUMO

Studying the spatiotemporal characteristics of air pollutants in urban agglomerations and their response factors will help to improve the quality of urban living. In combining air quality monitoring data and wavelet analysis from the Chengdu-Chongqing urban agglomeration (CCUA), this study assessed the spatiotemporal distribution characteristics and influential factors of air pollutants on daily, monthly and annual scales. The results showed that the concentration of air pollutants in the CCUA has decreased year by year, and air quality has improved. Except for O3, pollutants in autumn and winter were higher than those in summer. The spatial distribution of air pollutants was obvious distributed in Chengdu, Chongqing, Zigong and Dazhou. Pollution incidents were mainly concentrated in winter. The 6 air pollutants and air quality index (AQI) have dominant periods on multiple time scales. AQI showed positive coherence with PM2.5 and PM10 on multiple time scales, and obvious positive coherence with SO2, CO, NO2 and O3 in the short term scale. AQI was not strongly correlated with the fire point, but exhibited obvious negative coherence in the long term scale. In addition, AQI showed an obvious positive correlation with temperature and sunshine hours in short term, and a clear negative correlation with humidity and rainfall. The research results of this paper will provide a reference for pollution prevention and control in the CCUA.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado/análise , Poluição do Ar/análise , Poluentes Atmosféricos/análise , China , Estações do Ano , Monitoramento Ambiental/métodos , Cidades
2.
Planta ; 256(4): 80, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097229

RESUMO

MAIN CONCLUSION: Consequences of air pollutants on physiology, biology, yield and quality in the crops are evident. Crop and soil management can play significant roles in attenuating the impacts of air pollutants. With rapid urbanization and industrialization, air pollution has emerged as a serious threat to quality crop production. Assessing the effect of the elevated level of pollutants on the performance of the crops is crucial. Compared to the soil and water pollutants, the air pollutants spread more rapidly to the extensive area. This paper has reviewed and highlighted the major findings of the previous research works on the morphological, physiological and biochemical changes in some important crops and fruits exposed to the increasing levels of air pollutants. The crop, soil and environmental factors governing the effect of air pollutants have been discussed. The majority of the observations suggest that the air pollutants alter the physiology and biochemical in the plants, i.e., while some pollutants are beneficial to the growth and yields and modify physiological and morphological processes, most of them appeared to be detrimental to the crop yields and their quality. A better understanding of the mechanisms of the uptake of air pollutants and crop responses is quite important for devising the measures ‒ at both policy and program levels ‒ to minimize their possible negative impacts on crops. Further research directions in this field have also been presented.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluição do Ar/efeitos adversos , Produtos Agrícolas , Solo
3.
J Environ Manage ; 304: 114313, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34942548

RESUMO

Environmental pollution mitigation measure involving bioremediation technology is a sustainable intervention for a greener ecosystem biorecovery, especially the obnoxious hydrocarbons, xenobiotics, and other environmental pollutants induced by anthropogenic stressors. Several successful case studies have provided evidence to this paradigm including the putative adoption that the technology is eco-friendly, cost-effective, and shows a high tendency for total contaminants mineralization into innocuous bye-products. The present review reports advances in bioremediation, types, and strategies conventionally adopted in contaminant clean-up. It identified that natural attenuation and biostimulation are faced with notable limitations including the poor remedial outcome under the natural attenuation system and the residual contamination occasion following a biostimulation operation. It remarks that the use of genetically engineered microorganisms shows a potentially promising insight as a prudent remedial approach but is currently challenged by few ethical restrictions and the rural unavailability of the technology. It underscores that bioaugmentation, particularly the use of high cell density assemblages referred to as microbial consortia possess promising remedial prospects thus offers a more sustainable environmental security. The authors, therefore, recommend bioaugmentation for large scale contaminated sites in regions where environmental degradation is commonplace.


Assuntos
Recuperação e Remediação Ambiental , Petróleo , Poluentes do Solo , Efeitos Antropogênicos , Biodegradação Ambiental , Ecossistema , Hidrocarbonetos , Microbiologia do Solo , Poluentes do Solo/análise , Tecnologia
4.
Proc Natl Acad Sci U S A ; 115(16): 4045-4050, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29666318

RESUMO

China's croplands have experienced drastic changes in management practices, such as fertilization, tillage, and residue treatments, since the 1980s. There is an ongoing debate about the impact of these changes on soil organic carbon (SOC) and its implications. Here we report results from an extensive study that provided direct evidence of cropland SOC sequestration in China. Based on the soil sampling locations recorded by the Second National Soil Survey of China in 1980, we collected 4,060 soil samples in 2011 from 58 counties that represent the typical cropping systems across China. Our results showed that across the country, the average SOC stock in the topsoil (0-20 cm) increased from 28.6 Mg C ha-1 in 1980 to 32.9 Mg C ha-1 in 2011, representing a net increase of 140 kg C ha-1 year-1 However, the SOC change differed among the major agricultural regions: SOC increased in all major agronomic regions except in Northeast China. The SOC sequestration was largely attributed to increased organic inputs driven by economics and policy: while higher root biomass resulting from enhanced crop productivity by chemical fertilizers predominated before 2000, higher residue inputs following the large-scale implementation of crop straw/stover return policy took over thereafter. The SOC change was negatively related to N inputs in East China, suggesting that the excessive N inputs, plus the shallowness of plow layers, may constrain the future C sequestration in Chinese croplands. Our results indicate that cropland SOC sequestration can be achieved through effectively manipulating economic and policy incentives to farmers.


Assuntos
Agricultura/métodos , Sequestro de Carbono , Carbono/análise , Conservação dos Recursos Naturais/legislação & jurisprudência , Compostos Orgânicos/análise , Políticas , Solo/química , Agricultura/economia , Agroquímicos/química , China , Compostagem , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/estatística & dados numéricos , Produtos Agrícolas/química , Fazendas , Atividades Humanas , Humanos , Dispersão Vegetal , Raízes de Plantas/química , Caules de Planta/química , Plantas/química , Mudança Social , Microbiologia do Solo
5.
Bull Environ Contam Toxicol ; 106(1): 18-23, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33030558

RESUMO

Water and sediment samples were collected from a tributary (Ruxi River) of the Three Gorges Reservoir (TGR) to analyze the concentrations of seven heavy metals (HMs) and their fractions for better understanding the migration, bioavailability and potential environmental risk of HMs. The results indicated that the concentrations of HMs in water were lower than the Environmental Quality Standards for Surface Water Class I standards, except for Ni. Cd in sediment was found to be more sensitive to environmental changes, as the acid-soluble fraction of Cd accounted for about 40% of total Cd, and the sediment-water partition coefficient of Cd was the smallest among all the HMs. Meanwhile, multiple risk assessment methods of HMs indicated that sediment Cd in most sampling sites, significantly influenced by human activities, exhibited heavy pollution, suggesting that the Cd pollution should be attached great importance in the Ruxi River.


Assuntos
Metais Pesados , Poluentes Químicos da Água , China , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Metais Pesados/análise , Medição de Risco , Rios , Poluentes Químicos da Água/análise
6.
Ecotoxicol Environ Saf ; 170: 479-487, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30553926

RESUMO

Copper, a common heavy metal, may be beneficial for or poisonous to microbial activity. The objective of this study was to determine the effect of different copper ion concentrations on the nitrogen removal performance of Arthrobacter arilaitensis strain Y-10 and Pseudomonas taiwanensis strain J488. The non-competitive inhibition model was employed to evaluate the 50% inhibition concentrations (IC50 values) of copper ions toward the pure strains. In the absence of magnesium ions, a low concentration of copper (0.1 mg/L) significantly enhanced the ammonium removal ability of strain Y-10 and its removal efficiency increased by 10.88% compared with the control treatment. Copper ranging from 0 to 0.1 mg/L had no significant effect on the ammonium removal capacity of strain J488. After adding 9.90 mg/L of magnesium to the basal medium, the effects of copper on nitrification of ammonium or denitrification of nitrate or nitrite were also assessed. In these conditions, 0.25 mg/L copper ions could strongly inhibit the ammonium, nitrate and nitrite removal activities for strain Y-10. For strain J488, no clear deterioration in ammonium removal efficiency was observed at copper ion concentrations below 0.5 mg/L, but 0.25 mg/L copper ions significantly inhibited nitrate and nitrite removal efficiencies, which were only 45.88% and 6.35%, respectively. The IC50 values of copper ions for nitrate and nitrite removal by strain Y-10 were 0.195 and 0.090 mg/L respectively; for strain J488, the IC50 values were 0.175 and 0.196 mg/L. The magnesium ions could improve the cell growth, nitrogen removal efficiency and copper ion resistance of bacteria.


Assuntos
Cobre/química , Magnésio/química , Nitrogênio/isolamento & purificação , Compostos de Amônio/química , Compostos de Amônio/isolamento & purificação , Arthrobacter/efeitos dos fármacos , Arthrobacter/metabolismo , Biodegradação Ambiental , Desnitrificação , Concentração Inibidora 50 , Modelos Teóricos , Nitratos/química , Nitratos/isolamento & purificação , Nitrificação , Nitritos/química , Nitritos/isolamento & purificação , Nitrogênio/química , Pseudomonas/efeitos dos fármacos , Pseudomonas/metabolismo
7.
Biodegradation ; 29(2): 159-170, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29383556

RESUMO

Microorganism with simultaneous nitrification and denitrification ability plays a significant role in nitrogen removal process, especially in the eutrophic waters with excessive nitrogen loads. The nitrogen removal capacity of microorganism may suffer from low temperature or nitrite nitrogen source. In this study, a hypothermia aerobic nitrite-denitrifying bacterium, Pseudomonas tolaasii strain Y-11, was selected to determine the simultaneous nitrification and denitrification ability with mixed nitrogen source at 15 °C. The sole nitrogen removal efficiencies of strain Y-11 in simulated wastewater were obtained. After 24 h of incubation at 15 °C, the ammonium nitrogen fell below the detection limit from an initial value of 10.99 mg/L. Approximately 88.0 ± 0.33% of nitrate nitrogen was removed with the initial concentration of 11.78 mg/L and the nitrite nitrogen was not detected with the initial concentration of 10.75 mg/L after 48 h of incubation at 15 °C. Additionally, the simultaneous nitrification and denitrification nitrogen removal ability of P. tolaasii strain Y-11 was evaluated using low concentration of mixed NH4+-N and NO3--N/NO2--N (about 5 mg/L-N each) and high concentration of mixed NH4+-N and NO3--N/NO2--N (about 100 mg/L-N each). There was no nitrite nitrogen accumulation at the time of evaluation. The results demonstrated that P. tolaasii strain Y-11 had higher simultaneous nitrification and denitrification capacity with low concentration of mixed inorganic nitrogen sources and may be applied in low temperature wastewater treatment.


Assuntos
Temperatura Baixa , Desnitrificação , Nitrificação , Nitrogênio/metabolismo , Pseudomonas/metabolismo , Aerobiose , Compostos de Amônio/isolamento & purificação , Compostos de Amônio/farmacologia , Biodegradação Ambiental/efeitos dos fármacos , Desnitrificação/efeitos dos fármacos , Nitratos/farmacologia , Nitrificação/efeitos dos fármacos , Nitritos/farmacologia , Nitrogênio/isolamento & purificação , Pseudomonas/efeitos dos fármacos
8.
Environ Monit Assess ; 188(4): 257, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27358999

RESUMO

Losses of agricultural pollutants from small catchments are a major issue for water quality in the Three Gorges Region. Solutions are urgently needed. However, before pollutant losses can be controlled, information about spatial and temporal variations in pollutant losses is needed. The study was carried out in the Wangjiagou catchment, a small agricultural catchment in Fuling District, Chongqing, and the data about non-point source losses of nitrogen and phosphorus was collected here. Water samples were collected daily by an automatic water sampler at the outlets of two subcatchments from 2012 to 2014. Also, samples of surface runoff from 28 sampling sites distributed through the subcatchments were collected during 12 rainfall events in 2014. A range of water quality variables were analyzed for all samples and were used to demonstrate the variation in non-point losses of nitrogen and phosphorus over a range of temporal and spatial scales and in different types of rainfall in the catchment. Results showed that there was a significant linear correlation between the mass concentrations of total nitrogen (TN) and nitrate (NO3-N) in surface runoff and that the relationship was maintained with changes in time. Concentrations of TN and NO3-N peaked after fertilizer was applied to crops in spring and autumn; concentrations decreased rapidly after the peak values in spring but declined slowly in autumn. N and P concentrations fluctuated more and showed a greater degree of dispersion during the spring crop cultivation period than those in autumn. Concentrations of TN and NO3-N in surface runoff were significantly and positively correlated with the proportion of the area that was planted with corn and mustard tubers, but were negatively correlated with the proportion of the area taken up with rice and mulberry plantations. The average concentrations of TN and NO3-N in surface runoff reached the highest level from the sampling points at the bottom of the land used for corn only, but lowest in rice fields. Slope gradient had a significant positive correlation with TN's and total phosphorus (TP)'s concentration losses. Concentrations of TN, NO3-N, and total phosphorus were significantly correlated with rainfall. Peak concentrations of ammoniacal nitrogen occurred during the fertilizer application period in spring and autumn. Different structures of land use types had a significant influence on the concentration losses of nitrogen and phosphorus; thus, using a reasonable way to adjust land use structure and spatial arrangement of whole catchment was an effective solution to control non-point source pollution of the Three Gorges Region.


Assuntos
Monitoramento Ambiental/métodos , Nitrogênio/análise , Fósforo/análise , Poluição Química da Água/estatística & dados numéricos , China , Análise Espaço-Temporal , Poluição Química da Água/análise
9.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(3): 723-7, 2013 Mar.
Artigo em Zh | MEDLINE | ID: mdl-23705441

RESUMO

Hyper-spectral remote sensing is one of the effective means for prediction of soil nutrients. Taking Wangjiagou small watershed of Three Gorges Reservoir Area as researching zone, based on the soil physicochemical properties, reflective spectrum analysis and measurement, were built predictive models for total phosphorous and total phosphorus concentrations in purple soil. Meanwhile, 33 soil samples from paddy soil were used to validate the prediction models for soil nutrients in purple soil. Results show that the total correlation coefficients between their predicted values and measured values of total nitrogen and total phosphorus concentration in purple soil are 0.672 and 0.498, respectively. Correlation coefficients obtained from predictive model of purple soil nutrients validated by paddy soil samples are 0.550 and 0.124. Therefore, it is reasonable to use hyper-spectrum method to prediction total nitrogen concentration. But prediction accuracy for total phosphorus concentration in purple soil is relatively poor. The prediction model of soil nutrients in purple soil is not suitable for paddy soil.

10.
Heliyon ; 9(4): e14983, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37064473

RESUMO

Dissimilatory nitrate reduction to ammonium (DNRA) has an important role in soil nitrogen retention and is considered to be constrained to anaerobic conditions. However, a recent study found that Pseudomonas putida Y-9 is capable of DNRA under aerobic conditions. In this study, four species of Pseudomonas spp. were found to produce ammonium during the nitrite reduction process under aerobic conditions, similar to the Y-9 strain. The detectable ammonium in the culture supernatant during the nitrite reduction process for each of the four strains originated intracellularly. A subsequent 15N isotope experiment showed that these four strains were able to transform 15NO2 - to 15NH4 + in 3 h under aerobic conditions. The NirBD sequence in each of the four strains showed high similarity with that in the Y-9 strain (approximately 94.61%). Moreover, the nirBD sequences in the four strains and the Y-9 strain were all similar to those of other Pseudomonas spp., while they were relatively distant in terms of their phylogenetic relationship from those of other genera. Overall, these results suggest that these four strains of Pseudomonas spp. are capable of DNRA under aerobic conditions, which might be attributed to the existence of nirBD.

11.
Mar Pollut Bull ; 193: 115141, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37295313

RESUMO

Taxa-specific responses to the increasing anthropogenic eutrophication offer promising insights for mitigating harmful algal blooms (HABs) in freshwaters. The present study evaluated the HABs species dynamics in response to the ecosystem anthropogenic enrichment during cyanobacterial-dominated spring HABs in the Pengxi River, Three Gorges Reservoir, China. Results show significant cyanobacterial dominance with a relative abundance (RA = 76.54 %). The ecosystem enrichments triggered shifts in the HABs community structure from Anabaena to Chroococcus, especially in the culture involving iron (Fe) addition (RA = 66.16 %). While P-alone enrichment caused a dramatic increase in the aggregate cell density (2.45 × 108 cells L-1), the multiple enrichment (NPFe) led to maximum biomass production (as chl-a = 39.62 ± 2.33 µgL-1), indicating that nutrient in conjunction with the HABs taxonomic characteristics e.g., tendency to possess high cell pigment contents rather than cell density can potentially determine massive biomass accumulations during HABs. The stimulation of growth as biomass production demonstrated by both P-alone and the multiple enrichments, NPFe indicates that although P exclusive control is feasible in the Pengxi ecosystem, it can only guarantee a short-term reduction in HABs magnitude and duration, thus a lasting HABs mitigation measure must consider a policy recommendation involving multiple nutrient management, especially N and P dual control strategy. The present study would adequately complement the concerted effort in developing a rational predictive framework for freshwater eutrophication management and HABs mitigations in the TGR and elsewhere with similar anthropogenic stressors.


Assuntos
Anabaena , Cianobactérias , Rios , Ecossistema , Nitrogênio/análise , Eutrofização , Proliferação Nociva de Algas , China
12.
Sci Total Environ ; 875: 162543, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878293

RESUMO

Although physical models at present have made important achievements in the assessment of non-point source pollution (NPSP), the requirement for large volumes of data and their accuracy limit their application. Therefore, constructing a scientific evaluation model of NPS nitrogen (N) and phosphorus (P) output is of great significance for the identification of N and P sources as well as pollution prevention and control in the basin. We considered runoff, leaching and landscape interception conditions, and constructed an input-migration-output (IMO) model based on the classic export coefficient model (ECM), and identified the main driving factors of NPSP using geographical detector (GD) in Three Gorges Reservoir area (TGRA). The results showed that, compared with the traditional export coefficient model, the prediction accuracy of the improved model for total nitrogen (TN) and total phosphorus (TP) increased by 15.46 % and 20.17 % respectively, and the error rates with the measured data were 9.43 % and 10.62 %. It was found that the total input volume of TN in the TGRA had declined from 58.16 × 104 t to 48.37 × 104 t, while the TP input volume increased from 2.76 × 104 t to 4.11 × 104 t, and then decreased to 4.01 × 104 t. In addition Pengxi River, Huangjin River and the northern part of Qi River were high value areas of NPSP input and output, but the range of high value areas of migration factors has narrowed. Pig breeding, rural population and dry land area were the main driving factors of N and P export. The IMO model can effectively improve prediction accuracy, and has significant implications for the prevention and control of NPSP.

13.
Aquat Toxicol ; 258: 106507, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36965430

RESUMO

Secondary metabolites (toxins) production during harmful algal blooms (HABs) further increases the public health risks associated with water quality deterioration from anthropogenic eutrophication. In the present study, the dynamic pattern in the production of metabolites under different nutrient conditions in Ceratium-dominated spring HABs was investigated in Pengxi River, China. Results revealed five (5) important toxins all attributable to the Dinophyceae including azaspiracid 2&4, okadaic acid, tetrodotoxin, brevetoxin, and saxitoxin, each exhibiting certain levels of specificity to the ecosystem enrichments. In effect, while the production of azaspiracid 2 and okadaic acid was N-driven, azaspiracid 4 and tetrodotoxin were enhanced by Ca enrichment. The ambient HABs community structure shows absolute ecosystem dominance by a dinoflagellate, Ceratium hirundinella with relative abundance ((RA = 78.81%, p Ë‚ 0.05). However, P enrichment triggered a slight shift (p ≥ 0.05) in the HABs species structure within the cyanobacteria strictly represented by Chroococcus minor (RA = 26.60%) and Dolichospermum circinalis (RA = 23.91%) initiating possible emergency dominance. The effect of nutrient addition on biomass production as chlorophyll-a (Chl-a) confirmed a P-limited ecosystem juxtaposed by a secondary limitation by Ca. The significant stimulation on biomass as Chl-a from day 3 through day 4 by N and the multiple enrichments designated as NPFeCa was attributed to luxury consumption rather than limitation following N repletion thus delaying biomass accumulation. The study, therefore, offers useful insights into the dynamic pattern of toxins during spring HABs while it also provides comprehensive knowledge of the HABs impact predictions in the TGR.


Assuntos
Cianobactérias , Dinoflagellida , Poluentes Químicos da Água , Rios/química , Ecossistema , Ácido Okadáico , Tetrodotoxina , Poluentes Químicos da Água/toxicidade , Proliferação Nociva de Algas , Nutrientes
14.
Environ Pollut ; 303: 119103, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35283199

RESUMO

Nutrient availability, is a crucial anthropogenic stressor promoting freshwater eutrophication and rapid expansion of harmful algal blooms (HABs), deteriorating water quality and threatening public health worldwide. The estimation of the HABs community responses to diel changes in the nutrients while characterizing the ecosystem growth limiting factors, is key to prudent watershed management. The present study investigated the short-term variabilities in autumn cyanobacterial responses to the external nutrient inputs into the Pengxi River using the nutrient addition bioassay approach. Results reveal phytoplankton community structure dominated by the cyanobacteria: Anabaena and Aphanizomenon spp. (relative abundance = 46.20% equilibrium abundance), followed by the diatoms, out of which Lindayia bodaniica, are preponderant. Nutrient enrichment triggered strong variabilities in dominance and successions among the cyanobacterial group, with maximum dominance (76.34%) exhibited by the Aphanizomenon sp. upon NH4 addition. Fe enrichment led to the succession of cyanobacteria, Leptolyngbya tenuis, which was below the detectable limit in the control, indicating the role of Fe in its proliferation. Studies on nutrient limitation demonstrated P/NH4 co-limited ecosystem, with P as the primary and NH4, a secondary limiting factor. The nitrate preference index (NO3-RPI = 0.991) shows a high preference for NH4 while NO3 constitutes the bulk of the ecosystem TN. Considering the elevated NO3 concentration, we posit that a shift in the phytoplankton community structure from cyanobacteria to diatoms dominated ecosystem, is expected following Fe depletion and a further stretch on the current ecosystem NH4 limitation. The study provides useful and first-ever insights for nutrient reduction in the middle Three Gorges Reservoir (TGR) before the onset of the heavy HABs during spring in the Pengxi River.


Assuntos
Cianobactérias , Diatomáceas , Bioensaio , China , Ecossistema , Eutrofização , Feminino , Humanos , Nitrogênio/análise , Nutrientes , Fósforo/análise , Fitoplâncton , Gravidez , Rios
15.
Front Microbiol ; 13: 982674, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312953

RESUMO

It is unknown whether nirBDs, which conventionally encode an NADH nitrite reductase, play other novel roles in nitrogen cycling. In this study, we explored the role of nirBDs in the nitrogen cycling of Pseudomonas putida Y-9. nirBDs had no effect on organic nitrogen transformation by strain Y-9. The △nirBD strain exhibited higher ammonium removal efficiency (90.7%) than the wild-type strain (76.1%; P < 0.05) and lower end gaseous nitrogen (N2O) production. Moreover, the expression of glnA (control of the ammonium assimilation) in the △nirBD strain was higher than that in the wild-type strain (P < 0.05) after being cultured in ammonium-containing medium. Furthermore, nitrite noticeably inhibited the ammonium elimination of the wild-type strain, with a corresponding removal rate decreasing to 44.8%. However, no similar impact on ammonium transformation was observed for the △nirBD strain, with removal efficiency reaching 97.5%. In conclusion, nirBDs in strain Y-9 decreased the ammonium assimilation and increased the ammonium oxidation to nitrous oxide.

16.
Front Microbiol ; 12: 739844, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589078

RESUMO

Soil rhizosphere microorganisms play crucial roles in promoting plant nutrient absorption and maintaining soil health. However, the effects of different phosphorus (P) managements on soil microbial communities in a slope farming system are poorly understood. Here, rhizosphere microbial communities under two P fertilization levels-conventional (125 kg P2O5 ha-1, P125) and optimal (90 kg P2O5 ha-1, P90)-were compared at four growth stages of maize in a typical sloped farming system. The richness and diversity of rhizosphere bacterial communities showed significant dynamic changes throughout the growth period of maize, while different results were observed in fungal communities. However, both the P fertilization levels and the growth stages influenced the structure and composition of the maize rhizosphere microbiota. Notably, compared to P125, Pseudomonas, Conexibacter, Mycobacterium, Acidothermus, Glomeromycota, and Talaromyces were significantly enriched in the different growth stages of maize under P90, while the relative abundance of Fusarium was significantly decreased during maize harvest. Soil total nitrogen (TN) and pH are the first environmental drivers of change in bacterial and fungal community structures, respectively. The abundance of Gemmatimonadota, Proteobacteria, and Cyanobacteria showed significant correlations with soil TN, while that of Basidiomycota and Mortierellomycota was significantly related to pH. Additionally, P90 strengthened the connection between bacteria, but reduced the links between fungi at the genus level. Our work helps in understanding the role of P fertilization levels in shaping the rhizosphere microbiota and may manipulate beneficial microorganisms for better P use efficiency.

17.
Microorganisms ; 9(7)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34361959

RESUMO

The biogeochemical consequences of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) have a significant influence on nitrogen (N) cycling in the ecosystem. Many researchers have explored these two pathways in soil and sediment ecosystems under anaerobic conditions. However, limited information is available regarding the influence of external environmental conditions on these two pathways in a well-defined experimental system under aerobic conditions. In this study, the impacts of the external environmental factors (carbon source, C/N ratio, pH, and dissolved oxygen) on nitrite reduction through the denitrification and DNRA routes in Pseudomonas putida Y-9 were studied. Results found that sodium citrate and sodium acetate favored denitrification and DNRA, respectively. Furthermore, neutral pH and aerobic conditions both facilitated DNRA and denitrification. Especially, low C/N ratios motivated the DNRA while high C/N ratios stimulated the denitrification, which was opposite to the observed phenomena under anaerobic conditions.

18.
Front Microbiol ; 12: 764241, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966364

RESUMO

Realizing the smallest nitrogen loss is a challenge in the nitrate reduction process. Dissimilatory nitrate reduction to ammonium (DNRA) and nitrate assimilation play crucial roles in nitrogen retention. In this study, the effects of the carbon source, C/N ratio, pH, and dissolved oxygen on the multiple nitrate reduction pathways conducted by Pseudomonas putida Y-9 are explored. Strain Y-9 efficiently removed nitrate (up to 89.79%) with glucose as the sole carbon source, and the nitrogen loss in this system was 15.43%. The total nitrogen decrease and ammonium accumulation at a C/N ratio of 9 were lower than that at 12 and higher than that at 15, respectively (P < 0.05). Besides, neutral and alkaline conditions (pH 7-9) favored nitrate reduction. Largest nitrate removal (81.78%) and minimum nitrogen loss (10.63%) were observed at pH 7. The nitrate removal and ammonium production efficiencies of strain Y-9 increased due to an increased shaking speed. The expression patterns of nirBD (the gene that controls nitrate assimilation and DNRA) in strain Y-9 were similar to ammonium patterns of the tested incubation conditions. In summary, the following conditions facilitated nitrate assimilation and DNRA by strain Y-9, while reducing the denitrification: glucose as the carbon source, a C/N ratio of 9, a pH of 7, and a shaking speed of 150 rpm. Under these conditions, nitrate removal was substantial, and nitrogen loss from the system was minimal.

19.
J Fungi (Basel) ; 7(6)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200509

RESUMO

The concurrent effect of elevated CO2 (eCO2) concentrations and arbuscular mycorrhizal fungi (AMF) on plant growth, carbon (C), nitrogen (N), phosphorus (P) and potassium (K) accumulations in plant and soil is largely unknown. To understand the mechanisms of eCO2 and mycorrhization on wheat (Triticum aestivum) performance and soil fertility, wheat seedlings were grown under four different CO2 environments for 12 weeks, including (1) ambient CO2 (ACO2, 410/460 ppm, daytime/nighttime), (2) sole daytime eCO2 (DeCO2, 550/460 ppm), (3) sole nighttime eCO2 (NeCO2, 410/610 ppm), and (4) dual or continuous daytime/nighttime eCO2 ((D + N)eCO2, 550/610 ppm), and with or without AMF (Funneliformis mosseae) colonization. DeCO2, NeCO2 and (D + N)eCO2 generally significantly increased shoot and root biomass, plant C, N, P and K accumulation, soil invertase and urease activity, but decreased shoot and root N, P and K concentrations, and soil available N, P and K. Compared with non-AMF, AMF effects on above-mentioned characteristics were significantly positive under ACO2, DeCO2 and (D + N)eCO2, but negative on plant biomass, C, N, P and K accumulation under NeCO2. Overall, AMF colonization alleviated soil nutrient constraints on plant responses to DeCO2, while NeCO2 decreased AMF's beneficial effects on plants. These results demonstrated that an integration of AMF's benefits to plants under factual field DeCO2 and/or NeCO2 will be critical for managing the long-term consequence of future CO2 rising on global cropping systems.

20.
Int J Biol Macromol ; 176: 272-281, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33592262

RESUMO

This research studied the chemo-sensing of low-cost aminated pectin (PE) obtained by a facile calcination under ammonia gas at temperature no higher than 175 °C without excessive use of alkaline, acid or solvents. The ammonia gas was found to replace the hydroxyl and methoxyl group, enhancing the crystallinity and solubility of the resultant pectin than those calcined in air or in 5% H2. Though the increase of light absorption could be attributed mainly to the dehydration during calcination which caused the formation of CC double bond or aromatic ring, the N incorporation could be important to the photoluminescence (PL) emission. The PL quenching of the blue fluorescent aminated pectin showed a good linearity with the concentration of Cu2+, Fe3+ and the highest sensitivity toward Cu2+ among the investigated metal ions. In order to further increase the PL quenching toward Cu2+ and decrease the interference of Fe3+, a method involving H2O2 and ultraviolet illumination was developed to catalyze the oxidation of fluorophores on the polymer. This work provides new horizon on the modification and application of pectin in chemosensing.


Assuntos
Cobre/análise , Medições Luminescentes , Pectinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA