Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 203: 106012, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084804

RESUMO

Liriomyza trifolii, an invasive pest, poses a substantial threat to horticultural and vegetable plants. It spreads rapidly, especially in hot weather, leading to large-scale outbreaks with strong thermotolerance and insecticide resistance. In this study, mortality and LtCYP4g1 expression in L. trifolii were evaluated after thermal and insecticides exposure. Furthermore, functional verification of LtCYP4g1 was conducted through RNA interference and bacterial survival assays in Escherichia coli containing recombinant LtCYP4g1 protein. Results indicated that a short time exposure to high temperature incresed insecticide tolerance of L. trifolii, attributed to decreased mortality and induced LtCYP4g1 expression; LtCYP4g1 was involved in stimulating synthesis of cuticular hydrocarbons (CHCs) and elevating epicuticle lipid content and thickness, and E. coli cells overexpressing LtCYP4g1 exhibited significant tolerance to thermal and insecticide stress. In general, P450-mediated tolerance of L. trifolii was enhanced by high temperature, with LtCYP4g1 playing a role in promoting biosynthesis of CHCs for thickening epidermal lipid barrier and reducing cuticular penetration. This study provides a framework for delving into the function of CYP450s in insecticide detoxification and illustrates the role of global warming in driving the evolution of L. trifolii.


Assuntos
Sistema Enzimático do Citocromo P-450 , Inseticidas , Ivermectina , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Animais , Inseticidas/farmacologia , Ivermectina/análogos & derivados , Ivermectina/farmacologia , Resistência a Inseticidas/genética , Hidrocarbonetos/metabolismo , Temperatura Alta , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Besouros/efeitos dos fármacos , Besouros/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
2.
Inorg Chem ; 61(17): 6403-6410, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35426305

RESUMO

Various arylenediimides (ADIs) have been applied to construct photoresponsive coordination polymers (CPs), while the size effect of ADI π-conjugate systems on the photoresponsive behaviors in CPs has been overlooked in the past few years. Herein, we emphasize the size effect of ADI π-conjugate systems on photoinduced electron transfer (ET) in CPs, taking two Eu3+-based CPs, [Eu(H2BINDI)(BINDI)0.5(H2O)2]·NH2(CH3)2·8H2O (1) and [Eu2(BIPMDI)(DMF)4(NO3)2]·H2O·2DMF (2) [H4BINDI = N,N'-bis(5-isophthalic acid)naphthalenediimide; H4BIPMDI = N,N'-bis(5-isophthalic acid)pyromellitic diimide; DMF = N,N-dimethylformamide], as a case. Both 1 and 2 display ET-based photochromic behaviors with distinct photoresponsive rates and coloration contrast, which can contribute to the size effect of diimide cores on the interfacial contacts of electron donors/acceptors. Meanwhile, ET between the neighboring larger NDI cores of the H4BINDI ligands can block ligand-to-metal charge transfer and quench luminescence of the Eu3+ metal center in 1. Therefore, this work will provide a theoretical basis for the development and exploration of photoresponsive materials.

3.
Pestic Biochem Physiol ; 188: 105263, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36464368

RESUMO

The leafminer Liriomyza trifolii is an important insect pest of ornamental and vegetable crops worldwide. Cyromazine is an effective, commonly-used insecticide that functions as a growth regulator, but its effect on L. trifolii has not been previously reported. In this study, transcriptome analysis was undertaken in L. trifolii exposed to cyromazine. Clusters of orthologous groups analysis indicated that a large number of differentially expressed genes responding to cyromazine were categorized as "lipid transport and metabolism", "post-translational modification, protein turnover, chaperones", and "cell wall/membrane/envelope biogenesis". Gene ontology analysis indicated that pathways associated with insect hormones, growth and development, and cuticle synthesis were significantly enriched. In general, the transcriptome results showed that the genes related to insect hormones were significantly expressed after treatment with cyromazine. Furthermore, the combined exposure of L. trifolii to cyromazine and the hormone analogues 20-hydroxyecdysone (20E) or juvenile hormone (JH) indicated that hormone analogues can change the expression pattern of hormone-related genes (20EP and JHEH) and pupal length. The combined application of cyromazine with 20E improved the survival rate of L. trifolii, whereas the combination of JH and cyromazine reduced survival. The results of this study help elucidate the mechanistic basis for cyromazine toxicity and provide a foundation for understanding cyromazine resistance.


Assuntos
Dípteros , Hormônios de Inseto , Inseticidas , Animais , Dípteros/genética , Inseticidas/toxicidade , Triazinas/toxicidade , Hormônios Juvenis/farmacologia
4.
J Econ Entomol ; 108(1): 210-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26470122

RESUMO

Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a globally distributed pest. One of the key endosymbionts in B. tabaci is Wolbachia, an α-proteobacterium implicated in many important biological processes. Previous studies indicated that the infection frequency of Wolbachia in Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) varied greatly among populations in different areas. However, little is known about the factors that influence the prevalence of Wolbachia in B. tabaci. In this paper, 25 field populations were collected from different locations in China, and 1,161 individuals were screened for the presence of Wolbachia using a nested polymerase chain reaction (PCR)-based method, which targets the wsp gene, to confirm Wolbachia infection status. The prevalence of Wolbachia ranged from 1.54 to 66.67% within the 25 field populations, and the infection frequency of Wolbachia was affected significantly by the putative species of B. tabaci. The infection frequency (51.55%) of Wolbachia was significantly greater in native species than in the MED (25.65%) and MEAM1 (14.37%). With the exception of host plant, all factors, including putative species, geographic location, and the sex of the host, affected the Wolbachia infection frequency in whiteflies. Six Wolbachia strains were found and clustered into four distinct clades upon phylogenetic analyses. Furthermore, Wolbachia in B. tabaci have close relationships with those from other host species, including Liriomyza trifolii (Burgess), Sogatella furcifera (Horvath), Nilaparvata lugens (Stål), and Culex pipiens L. The results demonstrated the variation and diversity of Wolbachia in B. tabaci field populations, and that the application of nested PCR extended our knowledge of Wolbachia infection in B. tabaci, especially in invasive whiteflies.


Assuntos
Produtos Agrícolas , Hemípteros/microbiologia , Wolbachia/genética , Animais , Feminino , Masculino , Reação em Cadeia da Polimerase
5.
Sci Rep ; 14(1): 12045, 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802502

RESUMO

Comprehending the phylogeography of invasive organisms enhances our insight into their distribution dynamics, which is instrumental for the development of effective prevention and management strategies. In China, Pomacea canaliculata and Pomacea maculata are the two most widespread and damaging species of the non-native Pomacea spp.. Given this species' rapid spread throughout country, it is urgent to investigate the genetic diversity and structure of its different geographic populations, a task undertaken in the current study using the COI and ITS1 mitochondrial and ribosomal DNA genes, respectively. The result of this study, based on a nationwide systematic survey, a collection of Pomacea spp., and the identification of cryptic species, showed that there is a degree of genetic diversity and differentiation in P. canaliculata, and that all of its variations are mainly due to differences between individuals within different geographical populations. Indeed, this species contains multiple haplotypes, but none of them form a systematic geographical population structure. Furthermore, the COI gene exhibits higher genetic diversity than the ITS1 gene. Our study further clarifies the invasive pathways and dispersal patterns of P. canaliculata in China to provide a theoretical basis.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Variação Genética , Genética Populacional , Haplótipos , China , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Filogeografia , Filogenia , Espécies Introduzidas , DNA Espaçador Ribossômico/genética , Gastrópodes/genética
6.
Insects ; 13(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36135533

RESUMO

Liriomyza trifolii is an important invasive pest that infects horticultural vegetables, displaying a strong competitive advantage and showing great potential for inflicting harm. Chitin synthase is one of the key enzymes in insect chitin metabolism and plays an important role in insect growth and development. In this study, a chitin synthase (CHS) transcript of L. trifolii was cloned, and the results showed that LtCHS belongs to the CHS2 family. The expression analysis indicated the presence of the highest abundance of LtCHS2 in the pupae at different developmental stages but showed no significant difference among different tissues in the adult. Furthermore, a dsRNA immersion method was developed for RNA interference (RNAi) in L. trifolii using LtCHS2 transcript. RNAi can significantly reduce the expression of LtCHS2 in pupae, and the emergence rate of the pupae was significantly lower than that of the control. The results provide a theoretical basis for exploring the role of chitin synthase gene in L. trifolii and proposing new pest control strategies.

7.
Int J Biol Macromol ; 211: 74-84, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35561856

RESUMO

Small heat shock proteins (sHSPs) help prevent the irreversible aggregation of denatured proteins that occurs in response to organismal stress. In this study, we identified two intron-free genes encoding sHSPs from Frankliniella occidentalis; these were designated FoHSP11.6 and FoHSP28.0 and belonged to an atypical and typical sHSP family, respectively. Both FoHSPs were transcribed in all developmental stages of F. occidentalis with the highest expression levels in pupae and adults and greater expression in males than females. Although the FoHSPs had different temperature-induced expression profiles, they were generally induced by both low and high temperatures and reached maximal expression levels after 0.5-1 h of temperature stress. The FoHSPs expression levels in pupae were induced by drought and high humidity, and higher expression levels were correlated with lower survival rates. The thermotolerance of F. occidentalis decreased when theFoHSPs were silenced by RNA interference. Our results show that FoHSP11.6 and FoHSP28.0 are involved in the response to temperature and drought and may also function in growth and development of F. occidentalis.


Assuntos
Proteínas de Choque Térmico Pequenas , Tisanópteros , Animais , Feminino , Flores , Proteínas de Choque Térmico Pequenas/genética , Masculino , Pupa/genética , Temperatura , Tisanópteros/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA