Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mediators Inflamm ; 2024: 3358184, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38223749

RESUMO

Objectives: Ankylosing spondylitis (AS) is a chronic inflammatory rheumatic disease characterized by chronic spinal inflammation, arthritis, gut inflammation, and enthesitis. We aimed to identify the key biomarkers related to immune infiltration and osteoclast differentiation in the pathological process of AS by bioinformatic methods. Methods: GSE25101 from the Gene Expression Omnibus was used to obtain AS-associated microarray datasets. We performed bioinformatics analysis using R software to validate different expression levels. The purpose of the GO and KEGG enrichment analyses of DEGs was to exclude key genes. Using weighted correlation network analysis (WGCNA), we examined all expression profile data and identified differentially expressed genes. The objective was to investigate the interaction between genetic and clinical features and to identify the essential relationships underlying coexpression modules. The CIBERSORT method was used to make a comparison of the immune infiltration in whole blood between the AS group and the control group. The WGCNA R program from Bioconductor was used to identify hub genes. RNA extraction reverse transcription and quantitative polymerase chain reaction were conducted in the peripheral blood collected from six AS patients and six health volunteers matched by age and sex. Results: 125 DEGs were identified, consisting of 36 upregulated and 89 downregulated genes that are involved in the cell cycle and replication processes. In the WGCNA, modules of MCODE with different algorithms were used to find 33 key genes that were related to each other in a strong way. Immune infiltration analysis found that naive CD4+ T cells and monocytes may be involved in the process of AS. PLCG2 and IFNAR1 genes were obtained by screening genes meeting the conditions of immune cell infiltration and osteoclast differentiation in AS patients among IGF2R, GRN, SH2D1A, LILRB3, IFNAR1, PLCG2, and TNFRSF1B. The results demonstrated that the levels of PLCG2 mRNA expression in AS were considerably higher than those in healthy individuals (P=0.003). IFNAR1 mRNA expression levels were considerably lower in AS than in healthy individuals (P < 0.0001). Conclusions: Dysregulation of PLCG2 and IFNAR1 are key factors in disease occurrence and development of AS through regulating immune infiltration and osteoclast differentiation. Explaining the differences in immune infiltration and osteoclast differentiation between AS and normal samples will contribute to understanding the development of spondyloarthritis.


Assuntos
Espondilite Anquilosante , Humanos , Espondilite Anquilosante/genética , Osteoclastos , Inflamação , Biomarcadores , RNA Mensageiro , Biologia Computacional , Receptor de Interferon alfa e beta , Receptores Imunológicos , Antígenos CD
2.
Acta Pharm Sin B ; 13(7): 2963-2975, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37521868

RESUMO

Insulin-like growth factor-1 receptor (IGF-1R) has been made an attractive anticancer target due to its overexpression in cancers. However, targeting it has often produced the disappointing results as the role played by cross talk with numerous downstream signalings. Here, we report a disobliging IGF-1R signaling which promotes growth of cancer through triggering the E3 ubiquitin ligase MEX3A-mediated degradation of RIG-I. The active ß-arrestin-2 scaffolds this disobliging signaling to talk with MEX3A. In response to ligands, IGF-1Rß activated the basal ßarr2 into its active state by phosphorylating the interdomain domain on Tyr64 and Tyr250, opening the middle loop (Leu130‒Cys141) to the RING domain of MEX3A through the conformational changes of ßarr2. The models of ßarr2/IGF-1Rß and ßarr2/MEX3A could interpret the mechanism of the activated-IGF-1R in triggering degradation of RIG-I. The assay of the mutants ßarr2Y64A and ßarr2Y250A further confirmed the role of these two Tyr residues of the interlobe in mediating the talk between IGF-1Rß and the RING domain of MEX3A. The truncated-ßarr2 and the peptide ATQAIRIF, which mimicked the RING domain of MEX3A could prevent the formation of ßarr2/IGF-1Rß and ßarr2/MEX3A complexes, thus blocking the IGF-1R-triggered RIG-I degradation. Degradation of RIG-I resulted in the suppression of the IFN-I-associated immune cells in the TME due to the blockade of the RIG-I-MAVS-IFN-I pathway. Poly(I:C) could reverse anti-PD-L1 insensitivity by recovery of RIG-I. In summary, we revealed a disobliging IGF-1R signaling by which IGF-1Rß promoted cancer growth through triggering the MEX3A-mediated degradation of RIG-I.

3.
Acta Pharm Sin B ; 13(9): 3744-3755, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37719369

RESUMO

The well-known insulin-like growth factor 1 (IGF1)/IGF-1 receptor (IGF-1R) signaling pathway is overexpressed in many tumors, and is thus an attractive target for cancer treatment. However, results have often been disappointing due to crosstalk with other signals. Here, we report that IGF-1R signaling stimulates the growth of hepatocellular carcinoma (HCC) cells through the translocation of IGF-1R into the ER to enhance sarco-endoplasmic reticulum calcium ATPase 2 (SERCA2) activity. In response to ligand binding, IGF-1Rß is translocated into the ER by ß-arrestin2 (ß-arr2). Mass spectrometry analysis identified SERCA2 as a target of ER IGF-1Rß. SERCA2 activity is heavily dependent on the increase in ER IGF-1Rß levels. ER IGF-1Rß phosphorylates SERCA2 on Tyr990 to enhance its activity. Mutation of SERCA2-Tyr990 disrupted the interaction of ER IGF-1Rß with SERCA2, and therefore ER IGF-1Rß failed to promote SERCA2 activity. The enhancement of SERCA2 activity triggered Ca2+ER perturbation, leading to an increase in autophagy. Thapsigargin blocked the interaction between SERCA2 and ER IGF-1Rß and therefore SERCA2 activity, resulting in inhibition of HCC growth. In conclusion, the translocation of IGF-1R into the ER triggers Ca2+ER perturbation by enhancing SERCA2 activity through phosphorylating Tyr990 in HCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA