Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Dev Biol ; 419(2): 311-320, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27609454

RESUMO

Fidelity of histone gene expression is important for normal cell growth and differentiation that is stringently controlled during development but is compromised during tumorigenesis. Efficient production of histones for packaging newly replicated DNA is particularly important for proper cell division and epigenetic control during the initial pre-implantation stages of embryonic development. Here, we addressed the unresolved question of when the machinery for histone gene transcription is activated in the developing zygote to accommodate temporal demands for histone gene expression. We examined induction of Histone Nuclear Factor P (HINFP), the only known transcription factor required for histone H4 gene expression, that binds directly to a unique H4 promoter-specific element to regulate histone H4 transcription. We show that Hinfp gene transcripts are stored in oocytes and maternally transmitted to the zygote. Transcripts from the paternal Hinfp gene, which reflect induction of zygotic gene expression, are apparent at the 4- to 8-cell stage, when most maternal mRNA pools are depleted. Loss of Hinfp expression due to gene ablation reduces cell numbers in E3.5 stage embryos and compromises implantation. Reduced cell proliferation is attributable to severe reduction in histone mRNA levels accompanied by reduced cell survival and genomic damage as measured by cleaved Caspase 3 and phospho-H2AX staining, respectively. We conclude that transmission of maternal Hinfp transcripts and zygotic activation of the Hinfp gene together are necessary to control H4 gene expression in early pre-implantation embryos in order to support normal embryonic development.


Assuntos
Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Histonas/biossíntese , RNA Mensageiro Estocado/genética , Proteínas Repressoras/fisiologia , Zigoto/metabolismo , Animais , Blastocisto/fisiologia , Caspase 3/metabolismo , Implantação do Embrião/fisiologia , Desenvolvimento Embrionário/fisiologia , Feminino , Genes Reporter , Histonas/genética , Histonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética
2.
Proc Natl Acad Sci U S A ; 108(24): 9863-8, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21628588

RESUMO

Lineage progression in osteoblasts and chondrocytes is stringently controlled by the cell-fate-determining transcription factor Runx2. In this study, we directly addressed whether microRNAs (miRNAs) can control the osteogenic activity of Runx2 and affect osteoblast maturation. A panel of 11 Runx2-targeting miRNAs (miR-23a, miR-30c, miR-34c, miR-133a, miR-135a, miR-137, miR-204, miR-205, miR-217, miR-218, and miR-338) is expressed in a lineage-related pattern in mesenchymal cell types. During both osteogenic and chondrogenic differentiation, these miRNAs, in general, are inversely expressed relative to Runx2. Based on 3'UTR luciferase reporter, immunoblot, and mRNA stability assays, each miRNA directly attenuates Runx2 protein accumulation. Runx2-targeting miRNAs differentially inhibit Runx2 protein expression in osteoblasts and chondrocytes and display different efficacies. Thus, cellular context contributes to miRNA-mediated regulation of Runx2. All Runx2-targeting miRNAs (except miR-218) significantly impede osteoblast differentiation, and their effects can be reversed by the corresponding anti-miRNAs. These findings demonstrate that osteoblastogenesis is limited by an elaborate network of functionally tested miRNAs that directly target the osteogenic master regulator Runx2.


Assuntos
Diferenciação Celular/genética , Condrócitos/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , MicroRNAs/genética , Osteoblastos/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases , Western Blotting , Linhagem Celular , Linhagem da Célula/genética , Condrócitos/citologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Luciferases/genética , Luciferases/metabolismo , Camundongos , Células NIH 3T3 , Osteoblastos/citologia , Osteogênese/genética , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
J Biol Chem ; 287(26): 21926-35, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22544738

RESUMO

Multiple microRNAs (miRNAs) that target the osteogenic Runt-related transcription factor 2 (RUNX2) define an interrelated network of miRNAs that control osteoblastogenesis. We addressed whether these miRNAs have functional targets beyond RUNX2 that coregulate skeletal development. Here, we find that seven RUNX2-targeting miRNAs (miR-23a, miR-30c, miR-34c, miR-133a, miR-135a, miR-205, and miR-217) also regulate the chondrogenic GATA transcription factor tricho-rhino-phalangeal syndrome I (TRPS1). Although the efficacy of each miRNA to target RUNX2 or TRPS1 differs in osteoblasts and chondrocytes, each effectively blocks maturation of precommitted osteoblasts and chondrocytes. Furthermore, these miRNAs can redirect mesenchymal stem cells into adipogenic cell fate with concomitant up-regulation of key lineage-specific transcription factors. Thus, a program of multiple miRNAs controls mesenchymal lineage progression by selectively blocking differentiation of osteoblasts and chondrocytes to control skeletal development.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fatores de Transcrição GATA/metabolismo , Mesoderma/metabolismo , Adipócitos/citologia , Animais , Osso e Ossos/metabolismo , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Condrócitos/citologia , Camundongos , Camundongos Endogâmicos C3H , MicroRNAs/metabolismo , Modelos Biológicos , Células NIH 3T3 , Osteoblastos/citologia , Osteoblastos/metabolismo , Proteínas Repressoras , Fatores de Transcrição/metabolismo
4.
J Cell Physiol ; 219(2): 438-48, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19170105

RESUMO

Cell cycle progression into S phase requires the induction of histone gene expression to package newly synthesized DNA as chromatin. Cyclin E stimulation of CDK2 at the Restriction point late in G1 controls both histone gene expression by the p220(NPAT)/HiNF-P pathway and initiation of DNA replication through the pRB/E2F pathway. The three CDK inhibitors (CKIs) p21(CIP1/WAF1), p27(KIP1), and p57(KIP2) attenuate CDK2 activity. Here we find that gamma-irradiation induces p21(CIP1/WAF1) but not the other two CKIs, while reducing histone H4 mRNA levels but not histone H4 gene promoter activation by the p220(NPAT)/HiNF-P complex. We also show that p21(CIP1/WAF1) is less effective than p27(KIP1) and p57(KIP2) in inhibiting the CDK2 dependent phosphorylation of p220(NPAT) at subnuclear foci and transcriptional activation of histone H4 genes. The greater effectiveness of p57(KIP2) in blocking the p220(NPAT)/HiNF-P pathway is attributable in part to its ability to form a specific complex with p220(NPAT) that may suppress CDK2/cyclin E phosphorylation through direct substrate inhibition. We conclude that CKIs selectively control stimulation of the histone H4 gene promoter by the p220(NPAT)/HiNF-P complex.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Regulação da Expressão Gênica , Histonas/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Animais , Ciclo Celular/efeitos da radiação , Proteínas de Ciclo Celular/genética , Linhagem Celular/efeitos da radiação , Ciclina E/genética , Ciclina E/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Raios gama , Genes Reporter , Histonas/metabolismo , Humanos , Camundongos , Proteínas Nucleares/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética
5.
Gene ; 402(1-2): 94-102, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17826007

RESUMO

Histone nuclear factor P (HiNF-P) activates histone H4 gene transcription at the G1/S phase transition upon association with its cyclin E/CDK2 responsive co-factor p220NPAT. Here we characterize the gene regulatory pathways that control the proliferation-related expression of HiNF-P. The HiNF-P locus contains a single TATA-less 0.6 kbp promoter with multiple phylogenetically conserved transcription factor recognition motifs. Transient reporter gene assays with HiNF-P promoter deletions show that there are at least three distinct activating regions (-387/-201, -201/-100 and -100/-1) that support maximal transcription. HiNF-P gene transcription is activated by SP1 through the -100/-1 domain and repressed by E2F1 through the -201/-100 domain. The multifunctional co-regulators CBP and p300 also stimulate HiNF-P gene transcription through the -201/-1 core promoter. Importantly, the HiNF-P promoter is activated by both HiNF-P and p220NPAT. This autoregulatory activation is further enhanced by cyclin E and CDK2, while blocked by CDK inhibition (i.e., p57KIP2 p27KIP1, p21CIP). Thus, the HiNF-P gene is a key non-histone target of p220NPAT and HiNF-P. The dependence of HiNF-P gene transcription on cyclin E/CDK2/p220NPAT signaling defines a novel feed-forward loop that may sustain HiNF-P expression in proliferating cells to support the cell cycle regulated synthesis of histone H4 proteins.


Assuntos
Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Fase G1 , Proteínas Repressoras/genética , Fase S , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Animais , Células HeLa , Homeostase/genética , Humanos , Camundongos , Modelos Biológicos , Modelos Genéticos , Células NIH 3T3 , Regiões Promotoras Genéticas , Elementos Reguladores de Transcrição , Proteínas Repressoras/metabolismo , Transdução de Sinais/genética
6.
Mol Cell Biol ; 23(22): 8110-23, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14585971

RESUMO

At the G(1)/S phase cell cycle transition, multiple histone genes are expressed to ensure that newly synthesized DNA is immediately packaged as chromatin. Here we have purified and functionally characterized the critical transcription factor HiNF-P, which is required for E2F-independent activation of the histone H4 multigene family. Using chromatin immunoprecipitation analysis and ligation-mediated PCR-assisted genomic sequencing, we show that HiNF-P interacts with conserved H4 cell cycle regulatory sequences in vivo. Antisense inhibition of HiNF-P reduces endogenous histone H4 gene expression. Furthermore, we find that HiNF-P utilizes NPAT/p220, a substrate of the cyclin E/cyclin-dependent kinase 2 (CDK2) kinase complex, as a key coactivator to enhance histone H4 gene transcription. The biological role of HiNF-P is reflected by impeded cell cycle progression into S phase upon antisense-mediated reduction of HiNF-P levels. Our results establish that HiNF-P is the ultimate link in a linear signaling pathway that is initiated with the growth factor-dependent induction of cyclin E/CDK2 kinase activity at the restriction point and culminates in the activation of histone H4 genes through HiNF-P at the G(1)/S phase transition.


Assuntos
Histonas/genética , Fase S/genética , Fase S/fisiologia , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Regulação da Expressão Gênica , Células HeLa , Humanos , Dados de Sequência Molecular , Peso Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Repressoras , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Dedos de Zinco/genética
7.
Cancer Res ; 62(9): 2510-5, 2002 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-11980642

RESUMO

The IFN regulatory factor-2 (IRF-2) oncoprotein controls the cell cycle-dependent expression of histone H4 genes during S phase and may function as a component of an E2F-independent mechanism to regulate cell growth. To investigate the role of IRF-2 in control of cell proliferation, we have constructed a stable FDC-P1 cell line (F2) in which expression of IRF-2 is doxycycline (DOX)-inducible, and a control cell line (F0). Both the F2 and F0 cell lines were synchronized in the G1 phase by isoleucine deprivation, and IRF-2 was induced by DOX on release of cells from the cell cycle block. Flow cytometric analyses indicated that forced expression of IRF-2 has limited effects on cell cycle progression before the first mitosis. However, continued cell growth in the presence of elevated IRF-2 levels results in polyploidy (>4n) or genomic disintegration (<2n) and cell death. Western blot analyses revealed that the levels of the cell cycle regulatory proteins cyclin B1 and the cyclin-dependent kinase (CDK)-inhibitory protein p27 are selectively increased. These changes occur concomitant with a significant elevation in the levels of the FAS-L protein, which is the ligand of the FAS (Apo1/CD95) receptor. We also found a subtle change in the ratio of the apoptosis-promoting Bax protein and the antiapoptotic Bcl-2 protein. Hence, IRF-2 induces a cell death response involving the Fas/FasL apoptotic pathway in FDC-P1 cells. Our data suggest that the IRF-2 oncoprotein regulates a critical cell cycle checkpoint that controls progression through G2 and mitosis in FDC-P1 hematopoietic progenitor cells.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Células Progenitoras Mieloides/fisiologia , Poliploidia , Proteínas Repressoras , Fatores de Transcrição , Animais , Apoptose/fisiologia , Morte Celular/fisiologia , Divisão Celular/fisiologia , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Proteína Ligante Fas , Fase G1/fisiologia , Regulação da Expressão Gênica , Histonas/biossíntese , Histonas/genética , Fator Regulador 2 de Interferon , Glicoproteínas de Membrana/biossíntese , Camundongos , Células Progenitoras Mieloides/citologia , Células Progenitoras Mieloides/metabolismo , Fase S/fisiologia , Regulação para Cima , Receptor fas/biossíntese
8.
Int J Pharm ; 478(1): 19-30, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25448566

RESUMO

The clinical successful application of gene therapy critically depends upon the development of non-toxic and efficient delivery system. Although polycationic non-viral vectors hold great promise in nanomedicine, the exploring of application in clinics still remains a big challenge. To develop a non-toxic and efficient non-viral gene delivery system, two kinds of endogenous substance, citric acid (CA) and spermine (SPE), were used to prepare a new low charge density hyperbranched polyspermine (HPSPE) by one-pot polymerization. The biocompatibility evaluated by hemolytic activity and red blood cell (RBC) aggregation indicated that HPSPE was highly biocompatible without causing hemolysis and RBC aggregation compared with PEI as well as SPE. The MTS assay also demonstrated that the cell viability of HPSPE was above 90% even at 200 µg/mL at different time (24 and 72 h), which much higher than PEI 25K. Besides, HPSPE showed high transfection efficiency without any toxic effect after aerosol delivery to the mice. Moreover, aerosol delivery of HPSPE/Akt1 shRNA significantly reduced tumor size and numbers and efficiently suppressed lung tumorigenesis ultimately in K-ras(LA1) lung cancer model mice. These results suggest that low charge density as well as endogenous substance skeleton endow HPSPE with great potential for toxicity-free and efficient gene therapy.


Assuntos
DNA/administração & dosagem , Técnicas de Transferência de Genes , Neoplasias Pulmonares/terapia , RNA Interferente Pequeno/administração & dosagem , Espermina/análogos & derivados , Espermina/uso terapêutico , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ácido Cítrico/química , Eritrócitos/efeitos dos fármacos , Eritrócitos/patologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hemólise/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Espermina/química , Espermina/farmacologia , Carga Tumoral/efeitos dos fármacos
9.
Cell Cycle ; 14(15): 2501-8, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26030398

RESUMO

Histone Nuclear Factor P (HINFP) is essential for expression of histone H4 genes. Ablation of Hinfp and consequential depletion of histones alter nucleosome spacing and cause stalled replication and DNA damage that ultimately result in genomic instability. Faithful replication and packaging of newly replicated DNA are required for normal cell cycle control and proliferation. The tumor suppressor protein p53, the guardian of the genome, controls multiple cell cycle checkpoints and its loss leads to cellular transformation. Here we addressed whether the absence of p53 impacts the outcomes/consequences of Hinfp-mediated histone H4 deficiency. We examined mouse embryonic fibroblasts lacking both Hinfp and p53. Our data revealed that the reduced histone H4 expression caused by depletion of Hinfp persists when p53 is also inactivated. Loss of p53 enhanced the abnormalities in nuclear shape and size (i.e. multi-lobed irregularly shaped nuclei) caused by Hinfp depletion and also altered the sub-nuclear organization of Histone Locus Bodies (HLBs). In addition to the polyploid phenotype resulting from deletion of either p53 or Hinfp, inactivation of both p53 and Hinfp increased mitotic defects and generated chromosomal fragility and susceptibility to DNA damage. Thus, our study conclusively establishes that simultaneous loss of both Hinfp and the p53 checkpoint is detrimental to normal cell growth and may predispose to cellular transformation.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Dano ao DNA/genética , Histonas/biossíntese , Proteínas Repressoras/genética , Proteína Supressora de Tumor p53/genética , Animais , Linhagem Celular , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Fragilidade Cromossômica/genética , Replicação do DNA/genética , Fibroblastos/citologia , Instabilidade Genômica/genética , Histonas/genética , Camundongos , Camundongos Knockout
10.
Biomaterials ; 61: 178-89, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26004233

RESUMO

The mitochondria-mediated apoptosis pathway is an effective option for cancer therapy due to the presence of cell-suicide weapons in mitochondria. However, anti-apoptotic proteins that are over-expressed in the mitochondria of many malignant tumors, such as Bcl-2 protein, could allow the cancer cells to evade apoptosis, greatly reducing the efficacy of this type of chemotherapy. Here, we constructed a hierarchical targeted delivery system that can deliver siRNA and chemotherapeutic agents sequentially to tumor cells and mitochondria. In detail, the copolymer TPP-CP-LND (TCPL) was synthesized by the mitochondria-targeting ligand triphenylphosphine (TPP) and therapeutic drug lonidamine (LND) conjugated to the polyethyleneimine in chitosan-graft-PEI (CP), and then complexed with siRNA. Followed, the complexes were coated with poly(acrylic acid)-polyethylene glycol-folic acid (PPF) copolymer to form a hierarchical targeted co-delivery system (TCPL/siRNA/PPF NPs). The TCPL/siRNA/PPF NPs had a neutral surface charge, were stable in plasma and exhibited pH-responsive shell separation. Remarkably, the TCPL/siRNA/PPF NPs simultaneously released siBcl-2 into the cytoplasm and delivered LND to mitochondria in the same cancer cell after FA-directed internalization, and even synergistically activated mitochondria apoptosis pathway. This work demonstrated the potential of RNA-interference and mitochondria-targeted chemotherapeutics to collaboratively stimulate the mitochondria apoptosis pathway for cancer therapy.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Indazóis/administração & dosagem , Mitocôndrias/fisiologia , Nanocápsulas/química , RNA Interferente Pequeno/administração & dosagem , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Difusão , Células HeLa , Humanos , Indazóis/química , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Nanocápsulas/ultraestrutura , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Resultado do Tratamento
11.
Adv Food Nutr Res ; 73: 83-101, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25300544

RESUMO

Gene therapy involves the introduction of foreign genetic material into cells in order to exert a therapeutic effect. Successful gene therapy relies on effective vector system. Viral vectors are highly efficient in transfecting cells, but the undesirable complications limit their therapeutic applications. As a natural biopolymer, chitosan has been considered to be a good gene carrier candidate due to its ideal character which combines biocompatibility, low toxicity with high cationic density together. However, the low cell specificity and low transfection efficiency of chitosan as a gene carrier need to be overcome before undertaking clinical trials. This chapter is principally on those endeavors such as chemical modifications using cell-specific ligands and stimuli-response groups as well as penetrating modifications that have been done to increase the performances of chitosan in gene therapy.


Assuntos
Quitosana/química , Terapia Genética/métodos , Aminoácidos/química , Animais , Barreira Hematoencefálica , Ácido Fólico/química , Galactose/química , Vetores Genéticos , Humanos , Ácido Hialurônico/química , Concentração de Íons de Hidrogênio , Ligantes , Magnetismo , Manose/química , Compostos de Sulfidrila/química , Transfecção
12.
Mol Cell Biol ; 34(14): 2650-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24797072

RESUMO

Fidelity of chromatin organization is crucial for normal cell cycle progression, and perturbations in packaging of DNA may predispose to transformation. Histone H4 protein is the most highly conserved chromatin protein, required for nucleosome assembly, with multiple histone H4 gene copies encoding identical protein. There is a long-standing recognition of the linkage of histone gene expression and DNA replication. A fundamental and unresolved question is the mechanism that couples histone biosynthesis with DNA replication and fidelity of cell cycle control. Here, we conditionally ablated the obligatory histone H4 transcription factor HINFP to cause depletion of histone H4 in mammalian cells. Deregulation of histone H4 results in catastrophic cellular and molecular defects that lead to genomic instability. Histone H4 depletion increases nucleosome spacing, impedes DNA synthesis, alters chromosome complement, and creates replicative stress. Our study provides functional evidence that the tight coupling between DNA replication and histone synthesis is reciprocal.


Assuntos
Replicação do DNA , Instabilidade Genômica , Histonas/genética , Proteínas Repressoras/genética , Animais , Ciclo Celular , Linhagem Celular , Proliferação de Células , Dano ao DNA , Epigênese Genética , Histonas/metabolismo , Camundongos , Camundongos Knockout , Nucleossomos/metabolismo
13.
J Biol Chem ; 284(5): 3125-3135, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-19017640

RESUMO

Transcriptional control of Runx2 gene expression through two alternative promoters (P1 and P2) is critical for the execution of its function as an osteogenic cell fate determining factor. In all vertebrates examined to date, the bone related P1 promoter contains a purine-rich region (-303 to -128 bp in the rat) that separates two regulatory domains. The length of this region differs dramatically between species even within the same order. Using deletion analysis, we show that part of this purine-rich region (-200 to -128) containing a duplicated element (Y-repeat) positively regulates Runx2 P1 transcription. Electrophoretic mobility assays and chromatin immunoprecipitations reveal that Y-repeat binds at least two different classes of transcription factors related to GC box binding proteins (e.g. SP1 and SP7/Osterix) and ETS-like factors (e.g. ETS1 and ELK1). Forced expression of SP1 increases Runx2 P1 promoter activity through the Y-repeats, and small interfering RNA depletion of SP1 decreases Runx2 expression. Similarly, exogenous expression of wild type ELK1, but not a defective mutant that cannot be phosphorylated, enhances Runx2 gene expression. SP1 is most abundant in proliferating cells, and ELK1 is most abundant in postconfluent cells; during MC3T3-E1 osteoblast differentiation, both proteins are transiently co-expressed when Runx2 expression is enhanced. Taken together, our data suggest that basal Runx2 gene transcription is regulated by dynamic interactions between SP1 and ETS-like factors during progression of osteogenesis.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/genética , Osteoblastos/metabolismo , Polimorfismo Genético , Regiões Promotoras Genéticas , Proteína Proto-Oncogênica c-ets-1/fisiologia , Sequências Repetitivas de Ácido Nucleico , Fator de Transcrição Sp1/fisiologia , Células 3T3 , Animais , Sequência de Bases , Diferenciação Celular , Imunoprecipitação da Cromatina , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Reporter , Luciferases/genética , Camundongos , Osteoblastos/citologia , Proteína Proto-Oncogênica c-ets-1/genética , Interferência de RNA , Fator de Transcrição Sp1/genética
14.
Cancer Res ; 67(21): 10334-42, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17974976

RESUMO

HiNF-P and its cofactor p220(NPAT) are principal factors regulating histone gene expression at the G(1)-S phase cell cycle transition. Here, we have investigated whether HiNF-P controls other cell cycle- and cancer-related genes. We used cDNA microarrays to monitor responsiveness of gene expression to small interfering RNA-mediated depletion of HiNF-P. Candidate HiNF-P target genes were examined for the presence of HiNF-P recognition motifs, in vitro HiNF-P binding to DNA, and in vivo association by chromatin immunoprecipitations and functional reporter gene assays. Of 177 proliferation-related genes we tested, 20 are modulated in HiNF-P-depleted cells and contain putative HiNF-P binding motifs. We validated that at least three genes (i.e., ATM, PRKDC, and CKS2) are HiNF-P dependent and provide data indicating that the DNA damage response is altered in HiNF-P-depleted cells. We conclude that, in addition to histone genes, HiNF-P also regulates expression of nonhistone targets that influence competency for cell cycle progression.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Ciclo Celular , Regulação da Expressão Gênica , Proteínas Nucleares/fisiologia , Proteínas Repressoras/fisiologia , Transdução de Sinais/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Sítios de Ligação , Quinases relacionadas a CDC2 e CDC28 , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Dano ao DNA , Proteína Quinase Ativada por DNA/genética , Proteínas de Ligação a DNA/genética , Genes Reguladores , Humanos , Proteínas Nucleares/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética
15.
J Biol Chem ; 278(29): 26589-96, 2003 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-12732645

RESUMO

Cell growth control by interferons (IFNs) involves up-regulation of the tumor suppressor interferon regulatory factor 1 (IRF1). To exert its anti-proliferative effects, this factor must ultimately control transcription of several key genes that regulate cell cycle progression. Here we show that the G1/S phase-related cyclin-dependent kinase 2 (CDK2) gene is a novel proliferation-related downstream target of IRF1. We find that IRF1, but not IRF2, IRF3, or IRF7, selectively represses CDK2 gene transcription in a dose- and time-dependent manner. We delineate the IRF1-responsive repressor element between nt -68 to -31 of the CDK2 promoter. For comparison, the tumor suppressor p53 represses CDK2 promoter activity independently of IRF1 through sequences upstream of nt -68, and the CDP/cut/Cux1 homeodomain protein represses transcription down-stream of -31. Thus, IRF1 repression represents one of three distinct mechanisms to attenuate CDK2 levels. The -68/-31 segment lacks a canonical IRF responsive element but contains a single SP1 binding site. Mutation of this element abrogates SP1-dependent enhancement of CDK2 promoter activity as expected but also abolishes IRF1-mediated repression. Forced elevation of SP1 levels increases endogenous CDK2 levels, whereas IRF1 reduces both endogenous SP1 and CDK2 protein levels. Hence, IRF1 represses CDK2 gene expression by interfering with SP1-dependent transcriptional activation. Our findings establish a causal series of events that functionally connect the anti-proliferative effects of interferons with the IRF1-dependent suppression of the CDK2 gene, which encodes a key regulator of the G1/S phase transition.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Quinases Ciclina-Dependentes/genética , Proteínas de Ligação a DNA/metabolismo , Fosfoproteínas/metabolismo , Podofilina/análogos & derivados , Podofilina/metabolismo , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , Células 3T3 , Animais , Sequência de Bases , Quinase 2 Dependente de Ciclina , DNA/genética , Proteínas de Ligação a DNA/genética , Genes Reporter , Humanos , Técnicas In Vitro , Fator Regulador 1 de Interferon , Camundongos , Fosfoproteínas/genética , Podofilotoxina/análogos & derivados , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Supressão Genética , Ativação Transcricional , Transfecção , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA