RESUMO
PURPOSE: A growing body of evidence has elucidated that the gut microbiota has a crucial impact on the pathophysiological process of atopic diseases. Eosinophilic chronic rhinosinusitis with nasal polyps (eCRSwNP) is a local atopic disease of the systemic immune response. Alterations in the gut microbiome in eCRSwNP patients remain largely undefined. METHODS: 16S rRNA gene sequencing was performed in a cross-sectional study of 17 eCRSwNP patients, 9 noneCRSwNP patients and 13 healthy controls, and gut microbiota DNA sequencing between each pair of groups was compared using bioinformatic methods. RESULTS: Compared with that of healthy controls, the gut microbiomes of eCRSwNP patients were characterised by a distinct overall microbial composition. However, no significant differences were found in the alpha diversity of the gut microbiota between patients and healthy controls. The distinct differences in microbial composition were significantly correlated with the severity of disease. At the genus level, the abundance of Faecalibacterium positively correlated with Lund-Mackay CT scores. Similarly, the abundance of Turicibacter positively correlated with the percentage of tissue eosinophils. CONCLUSIONS: We found alterations in the gut microbiome in eCRSwNP patients, and the alterations in the gut microbiome were correlated with the severity of disease.
RESUMO
BACKGROUND: Exposure to microbes may be important in the development of chronic rhinosinusitis (CRS). Dysbiosis of the nasal microbiome is considered to be related to CRS with nasal polyps (CRSwNP). The link between the nasal microbiota and eosinophilic CRSwNP (eCRSwNP) has rarely been studied. OBJECTIVE: The aim of this study was to rigorously characterize nasal dysbiosis in a cohort of patients with eCRSwNP and compare the nasal microbiomes of these patients with those of healthy controls (HCs). METHODS: We performed a cross-sectional study of 34 patients with eCRSwNP, 10 patients without CRSwNP, and 44 HCs by using 16S rRNA gene sequencing. An independent cohort of 14 patients with eCRSwNP, 9 patients without CRSwNP, and 11 HCs was used to validate the results. RESULTS: Compared with the nasal microbiome of healthy controls, the nasal microbiome of patients with eCRSwNP was characterized by higher α-diversity (Shannon and Chao1 index) and a distinct composition of microbes. Notably, the distinct differences in microbial composition between patients with eCRSwNP and HCs were significantly correlated with eCRSwNP disease status. Furthermore, in a diagnostic model generated by using these differences, a combination of 15 genera could be used to distinguish patients with eCRSwNP from HCs, with an area under the curve of approximately 0.8 in both the exploration and validation cohorts. CONCLUSION: Our study establishes the compositional alterations in the nasal microbiome in eCRSwNP and suggests the potential for using the nasal microbiota as a noninvasive predictive classifier for the diagnosis of eCRSwNP.
Assuntos
Pólipos Nasais , Rinite , Sinusite , Humanos , Estudos Transversais , Disbiose , RNA Ribossômico 16S/genética , Nariz , Doença CrônicaRESUMO
Saccharomyces boulardii (Sb) is a widely used fungal probiotic in treating various digestive diseases, including irritable bowel syndrome (IBS). However, the specific mechanisms of Sb relieving IBS remain unclear. The abnormal serotonin transporter (SERT) / 5-hydroxytryptamine (5-HT) system could cause disordered gastrointestinal sensation and motility, which closely related to IBS pathogenesis. The aim of this study was to explore the effects and mechanisms of Sb on regulating gut motility. Sb supernatant (SbS) was administered to intestinal epithelial cells and mice. SbS upregulated SERT expression via enhancing heparin-binding epidermal growth factor (HB-EGF) release to activate epidermal growth factor receptor (EGFR). EGFR kinase inhibitor treatment or HB-EGF siRNA transfection in cells blocked SbS upregulating SERT. Consistently, SbS-treated mice presented inhibited gut motility, and EGFR activation and SERT upregulation were found. Moreover, 16 S rDNA sequence presented an evident decrease in Firmicutes / Bacteroidetes ratio in SbS group. In genus level, SbS reduced Escherichia_Shigella, Alistipes, Clostridium XlVa, and Saccharibacteria_genera_incertae_sedis, meanwhile, increased Parasutterella. The abundance of Saccharibacteria_genera_incertae_sedis positively correlated with defecation parameters and intestinal 5-HT content. Fecal microbiota transplantation showed that SbS could modulate gut microbiota to influence gut motility. Interestingly, elimination of gut microbiota with antibiotic cocktail did not entirely block SbS regulating gut motility. Furthermore, SbS administration to IBS-D mice significantly upregulated SERT and inhibited gut motility. In conclusion, SbS could upregulate SERT by EGFR activation, and modulate gut microbiota to inhibit gut motility. This finding would provide more evidence for the application of this yeast probiotic in IBS and other diarrheal disorders.
Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Probióticos , Saccharomyces boulardii , Animais , Bactérias/metabolismo , Receptores ErbB/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Camundongos , Probióticos/farmacologia , Saccharomyces boulardii/metabolismo , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismoRESUMO
Evidence reveals that gut dysbiosis is involved in bidirectional interactions in gut-brain axis and participates in the progress of multiple disorders like anxiety. Gut microbes in early life are crucial for establishment of host health. We aimed to investigate whether early life probiotics Lactobacillus rhamnosus GG (LGG) colonization could relieve anxiety in adulthood through regulation of gut-brain axis. Live or fixed LGG was gavaged to C57BL/6 female mice from day 18 of pregnancy until natural birth, and newborn mice from day 1 to day 5 respectively. In this study, we found that live LGG could be effectively colonized in the intestine of offspring. LGG colonization increased intestinal villus length and colonic crypt depth, accompanied with barrier function protection before weaning. Microbiota composition by 16S rRNA sequencing showed that some beneficial bacteria, such as Akkermansia and Bifidobacteria, were abundant in LGG colonization group. The protective effect of LGG on gut microbiota persisted from weaning to adulthood. Intriguingly, behavioral results assessed by elevated plus mazed test and open field test demonstrated relief of anxiety-like behavior in adult LGG-colonized offspring. Mechanically, LGG colonization activated epithelial growth factor receptor (EGFR) and enhanced serotonin transporter (SERT) expression and modulated serotonergic system in the intestine, and increased brain-derived neurotrophic factor and γ-aminobutyric acid receptor levels in the hippocampus and amygdala. Blocking EGFR blunted LGG-induced the increased SERT and zonula occludens-1 expression. Collectively, early life LGG colonization could protect intestinal barrier of offspring and modulate gut-brain axis in association with relief of anxiety-like behavior in adulthood.
Assuntos
Lacticaseibacillus rhamnosus , Probióticos , Animais , Ansiedade , Eixo Encéfalo-Intestino , Receptores ErbB/metabolismo , Feminino , Lacticaseibacillus rhamnosus/genética , Lacticaseibacillus rhamnosus/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Probióticos/uso terapêutico , RNA Ribossômico 16S/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismoRESUMO
Nonalcoholic fatty liver disease (NAFLD), as a common chronic liver disorder, is prevalent in the world. Recent evidence demonstrates that the "gut-liver axis" is related well to the progression of NAFLD, which regards gut microbiota and the intestinal barrier as two critical factors correlated with NAFLD. Diammonium glycyrrhizinate (DG), a compound of the natural bioactive pentacyclic triterpenoid glycoside, is the main component of licorice root extracts. The anti-inflammatory and liver protection effects of DG have already been reported, but to date, the mechanism has not been fully elucidated. In this research, we observed that DG reduced body weight, liver steatosis, as well as hepatic inflammation in NAFLD model mice induced by a high-fat diet. Illumina sequencing of the 16S rRNA revealed that DG intervention notably altered the composition of the gut microbiota in NAFLD mice. The richness of gut microbiota was significantly increased by DG. Specifically, DG reduced the Firmicutes-to- Bacteroidetes ratio and the endotoxin-producing bacteria such as Desulfovibrio and elevated the abundance of probiotics such as Proteobacteria and Lactobacillus. DG could augment the levels of short-chain fatty acid (SCFA)-producing bacteria such as Ruminococcaceae and Lachnospiraceae and promote SCFA production. In addition, DG supplementation dramatically alleviated the intestinal low-grade inflammation. Meanwhile, DG improved the expression of tight junction proteins, the goblet cell number, and mucin secretion and sequentially enhanced the function of intestinal barrier. Collectively, the prevention of NAFLD by DG might be mediated by modulating gut microbiota and restoring the intestinal barrier.
Assuntos
Anti-Inflamatórios/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Ácido Glicirrízico/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Imuno-Histoquímica , Intestinos/efeitos dos fármacos , Intestinos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Inflammatory bowel disease (IBD), characterized by sustained inflammation, is a latent risk factor of colon tumorigenesis. Silibinin has been reported to be anti-inflammatory and antineoplastic, but its efficacy on colitis-associated cancer (CAC) has not been reported. Interlukin-6/signal transducer and activator of transcription 3 (IL-6/STAT3) is the key signaling pathway involved in CAC. We evaluated the chemopreventive effect of silibinin on a CAC mouse model and determined its impact on IL-6/STAT3 signaling. Intestinal tumor cells (IMCE and HCT-116 cell lines) were also treated by graded concentration of silibinin, and cellular viability was determined. Silibinin (750 mg/kg/day) was administered to an azoxymethane/dextran sulfate sodium (AOM/DSS) C57BL/6 mouse model for 10 weeks by gavage. Body weight, colon length, and the amount and diameter of colon tumors were documented, respectively. Specimens were subjected to H&E staining for colitis and tumor scoring, immunohistochemical staining and terminal deoxynucleotidyl transferase dUTP nick end labeling for proliferation assessment, and immunofluorescent staining for intestinal mucosa barrier assessment. Production of inflammatory cytokines was determined by real-time PCR. IL-6/STAT3 pathway activation was evaluated through immunohistochemical staining and western blot. In the current study, silibinin significantly inhibited the viability of intestinal tumor cells. The production of inflammatory cytokines and the phosphorylation of STAT3 were both inhibited in intestinal tumor cells. Meanwhile, silibinin decreased the amount and size of tumors in AOM/DSS mice. Colitis and tumor scores were decreased accompanying with inhibition of colonic tumor cell proliferation and promotion of cellular apoptosis. Additionally, silibinin could reduce the production of inflammatory cytokines and attenuate the impairment of colonic mucosal barrier. Furthermore, STAT3 phosphorylation was significantly suppressed by silibinin. In conclusion, silibinin could protect against colitis-associated tumorigenesis in mice via inhibiting IL-6/STAT3, which showed promising chemopreventive potential of CAC.
Assuntos
Colite/complicações , Neoplasias do Colo/etiologia , Neoplasias do Colo/metabolismo , Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Silibina/uso terapêutico , Animais , Azoximetano/toxicidade , Western Blotting , Colite/induzido quimicamente , Sulfato de Dextrana/toxicidade , Feminino , Células HCT116 , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo RealRESUMO
BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) may contribute to osteoporosis. Berberine is a traditional Chinese medicine and was recently shown to be beneficial in NAFLD. However, little is known about its impact on bone loss induced by NAFLD. AIM: We aimed to explore the role of berberine in bone loss and determine its underlying mechanisms in NAFLD. METHODS: C57BL/6 mice were fed a high-fat high-fructose high-glucose diet (HFFGD) for 16 weeks to establish a NAFLD mouse model. The mice were administered berberine (300 mg/kg/d) by gavage, and fatty liver levels and bone loss indicators were tested. RESULTS: Berberine significantly improved HFFGD-induced weight gain, hepatic lipid accumulation and increases in serum liver enzymes, thereby alleviating NAFLD. Berberine increased trabecular number (Tb. N), trabecular thickness (Tb. Th), bone volume to tissue volume ratio (BV/TV), and decreased trabecular separation (Tb. Sp) and restored bone loss in NAFLD. Mechanistically, berberine significantly inhibited ferroptosis and 4-hydroxynonenal (4-HNE), prostaglandin-endoperoxide synthase 2 (PTGS2), and transferrin (TF) levels and increased ferritin heavy chain (FTH) levels in the femurs of HFFGD-fed mice. Moreover, berberine also activated the solute carrier family 7 member 11 (SLC7A11)/glutathione (GSH)/glutathione peroxidase 4 (GPX4) signaling pathway. CONCLUSION: Berberine significantly ameliorates bone loss induced by NAFLD by activating the SLC7A11/GSH/GPX4 signaling pathway and inhibiting ferroptosis. Therefore, berberine may serve as a therapeutic agent for NAFLD-induced bone loss.
Assuntos
Berberina , Ferroptose , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ferroptose/efeitos dos fármacos , Masculino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Modelos Animais de Doenças , Osteoporose/tratamento farmacológico , Osteoporose/patologiaRESUMO
BACKGROUND: The overgrowth of Desulfovibrio, an inflammation promoting flagellated bacteria, has been found in ulcerative colitis (UC) patients. However, the molecular mechanism in promoting colitis remains unestablished. METHODS: The relative abundance Desulfovibrio vulgaris (D. vulgaris) in stool samples of UC patients was detected. Mice were treated with dextran sulfate sodium to induce colitis with or without administration of D. vulgaris or D. vulgaris flagellin (DVF), and the severity of colitis and the leucine-rich repeat containing 19 (LRRC19) signaling were assessed. The interaction between DVF and LRRC19 was identified by surface plasmon resonance and intestinal organoid culture. Lrrc19-/- and Tlr5-/- mice were used to investigate the indispensable role of LRRC19. Finally, the blockade of DVF-LRRC19 interaction was selected through virtual screening and the efficacy in colitis was assessed. RESULTS: D. vulgaris was enriched in fecal samples of UC patients and was correlated with the disease severity. D. vulgaris or DVF treatment significantly exacerbated colitis in germ-free mice and conventional mice. Mechanistically, DVF could interact with LRRC19 (rather than TLR5) in colitis mice and organoids, and then induce the production of pro-inflammatory cytokines. Lrrc19 knockdown blunted the severity of colitis. Furthermore, typhaneoside, a blockade of binding interfaces, blocked DVF-LRRC19 interaction and dramatically ameliorated DVF-induced colitis. CONCLUSIONS: D. vulgaris could promote colitis through DVF-LRRC19 interaction. Targeting DVF-LRRC19 interaction might be a new therapeutic strategy for UC therapy. Video Abstract.
Assuntos
Colite Ulcerativa , Colite , Desulfovibrio vulgaris , Humanos , Camundongos , Animais , Receptor 5 Toll-Like/metabolismo , Receptor 5 Toll-Like/uso terapêutico , Desulfovibrio vulgaris/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Colite Ulcerativa/microbiologia , Inflamação/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/uso terapêuticoRESUMO
INTRODUCTION: The perturbations of gut microbiota could interact with excessively activated immune responses and play key roles in the etiopathogenesis of ulcerative colitis (UC). Desulfovibrio, the most predominant sulfate reducing bacteria (SRB) resided in the human gut, was observed to overgrow in patients with UC. The interactions between specific gut microbiota and drugs and their impacts on UC treatment have not been demonstrated well. OBJECTIVES: This study aimed to elucidate whether Desulfovibrio vulgaris (D. vulgaris, DSV) and its flagellin could activate nucleotide-binding oligomerization domain-like receptors (NLR) family of apoptosis inhibitory proteins (NAIP) / NLR family caspase activation and recruitment domain-containing protein 4 (NLRC4) inflammasome and promote colitis, and further evaluate the efficacy of eugeniin targeting the interaction interface of D. vulgaris flagellin (DVF) and NAIP to attenuate UC. METHODS: The abundance of DSV and the occurrence of macrophage pyroptosis in human UC tissues were investigated. Colitis in mice was established by dextran sulfate sodium (DSS) and gavaged with DSV or its purified flagellin. NAIP/NLRC4 inflammasome activation and macrophage pyroptosis were evaluated in vivo and in vitro. The effects of eugeniin on blocking the interaction of DVF and NAIP/NLRC4 and relieving colitis were also assessed. RESULTS: The abundance of DSV increased in the feces of patients with UC and was found to be associated with disease activity. DSV and its flagellin facilitated DSS-induced colitis in mice. Mechanistically, RNA sequencing showed that gene expression associated with inflammasome complex and pyroptosis was upregulated after DVF treatment in macrophages. DVF was further demonstrated to induce significant macrophage pyroptosis in vitro, depending on NAIP/NLRC4 inflammasome activation. Furthermore, eugeniin was screened as an inhibitor of the interface between DVF and NAIP and successfully alleviated the proinflammatory effect of DVF in colitis. CONCLUSION: Targeting DVF-induced NAIP/NLRC4 inflammasome activation and macrophage pyroptosis ameliorates UC. This finding is of great significance for exploring the gut microbiota-host interactions in UC development and providing new insights for precise treatment.
Assuntos
Colite Ulcerativa , Desulfovibrio vulgaris , Humanos , Camundongos , Animais , Inflamassomos/metabolismo , Flagelina/metabolismo , Desulfovibrio vulgaris/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Macrófagos/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteína Inibidora de Apoptose Neuronal/metabolismoRESUMO
Inflammatory bowel disease (IBD) is characterized by chronic and relapsing inflammation of gastrointestinal tract, with steadily increased incidence and prevalence worldwide. Although the precise pathogenesis remains unclear, gut microbiota, bile acids (BAs), and aberrant immune response play essential roles in the development of IBD. Lately, gut dysbiosis including certain decreased beneficial bacteria and increased pathogens and aberrant BAs metabolism have been reported in IBD. The bacteria inhabited in human gut have critical functions in BA biotransformation. Patients with active IBD have elevated primary and conjugated BAs and decreased secondary BAs, accompanied by the impaired transformation activities (mainly deconjugation and 7α-dehydroxylation) of gut microbiota. Probiotics have exhibited certain positive effects by different mechanisms in the therapy of IBD. This review discussed the effectiveness of probiotics in certain clinical and animal model studies that might involve in gut microbiota-BAs axis. More importantly, the possible mechanisms of probiotics on regulating gut microbiota-BAs axis in IBD were elucidated, which we focused on the elevated gut bacteria containing bile salt hydrolase or BA-inducible enzymes at genus/species level that might participate in the BA biotransformation. Furthermore, beneficial effects exerted by activation of BA-activated receptors on intestinal immunity were also summarized, which might partially explain the protect effects and mechanisms of probiotics on IBD. Therefore, this review will provide new insights into a better understanding of probiotics in the therapy targeting gut microbiota-BAs axis of IBD.
Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Probióticos , Animais , Bactérias , Ácidos e Sais Biliares , Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/terapia , Probióticos/uso terapêuticoRESUMO
Inflammatory bowel disease (IBD) is an idiopathic inflammatory bowel disease. Modulation of gut microbiota with dietary and nutritional targets is a feasible strategy for the prevention and treatment of IBD. In this study, we focused on Clostridium butyricum Prazmowski (CB), a butyrate-producing potential probiotic. We found that CB feeding decreased the disease activity index, colon inflammation/injury score and cell apoptosis in an experimental colitis mouse model, as well as elevated the level of SCFAs in cecal feces. CB could also balance the inflammatory cytokines, protect tight junctions, and increase the number of goblet cells and MUC2 production in mice, accompanied by EGFR signaling activation triggered by heparin-binding epidermal growth factor (HB-EGF) and amphiregulin (AREG). From the perspective of mechanism, the CB supernatant (CBS) stimulated EGFR activation in colon epithelial cell lines in concentration-dependent and time-dependent manners. CBS reduced the damage of tight junctions induced by H2O2, and inhibition of EGFR could suppress the protective effect of CBS. In conclusion, CB could protect the gut barrier and alleviate experimental colitis through the transactivation of EGFR signaling in intestinal epithelial cells induced by ligands (HB-EGF and AREG). This study identified the potential efficacy of CB as a preventive strategy for IBD and showed the broad prospect of CB as a food supplement.
Assuntos
Clostridium butyricum , Colite , Doenças Inflamatórias Intestinais , Probióticos , Animais , Butiratos/metabolismo , Clostridium butyricum/fisiologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/prevenção & controle , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Peróxido de Hidrogênio/metabolismo , Camundongos , Probióticos/metabolismoRESUMO
Early life events can lead to multiple diseases in adulthood. Previous studies suggested that polysorbate 80 (P80) as a widely used emulsifier in pharmaceutical formulations and food industries could impair the intestinal barrier. However, whether maternal P80 (MP80) exposure could affect the long-term health of offspring remains unknown. In this study, we found that maternal P80 intake could retard intestinal development, disrupt the intestinal barrier, and cause low-grade intestinal inflammation in 3-week-old offspring. 16S rRNA sequencing and correlation analysis revealed that Mucispirillum, Clostridium XI, and Parabacteroides, which positively correlated with intestinal proliferation and differentiation, were decreased in the maternal P80 group. Interestingly, the increase in some harmful bacteria, including Proteobacteria, Helicobacteraceae, Campylobacterales, and Desulfovibrionales, persisted from the weaning period to adulthood (3 to 8 weeks). Furthermore, a fecal microbiota transplantation assay showed that the mice gavaged with feces from 3-week-old offspring of the MP80 group presented more severe intestinal inflammation and barrier disruption than the mice that received feces from the offspring of the control group. Finally, maternal P80 intake remarkably aggravated the structural disorder of intestinal crypt, increased proinflammatory factors, and exacerbated dextran sulfate sodium (DSS)-induced colitis in adulthood. Conclusively, maternal P80 intake could induce gut dysbiosis and promote colitis susceptibility in adulthood. This study provides new insights into the prevention of inflammatory bowel disease (IBD).IMPORTANCE The main findings of this research showed that maternal P80 intake could disrupt the intestinal barrier, induce gut dysbiosis, and promote colitis susceptibility in adulthood. This study will enhance understanding of the prevention of IBD.
RESUMO
The prevalence of inflammatory bowel disease (IBD) is increasing worldwide and correlates with dysregulated immune response because of gut microbiota dysbiosis. Some adverse early life events influence the establishment of the gut microbiota and act as risk factors for IBD. Prenatal maternal stress (PNMS) induces gut dysbiosis and perturbs the neuroimmune network of offspring. In this study, we aimed to investigate whether PNMS increases the susceptibility of offspring to colitis in adulthood. The related index was assessed during the weaning period and adulthood. We found that PNMS impaired the intestinal epithelial cell proliferation, goblet cell and Paneth cell differentiation, and mucosal barrier function in 3-week-old offspring. PNMS induced low-grade intestinal inflammation, but no signs of microscopic inflammatory changes were observed. Although there was no pronounced difference between the PNMS and control offspring in terms of their overall measures of alpha diversity for the gut microbiota, distinct microbial community changes characterized by increases in Desulfovibrio, Streptococcus, and Enterococcus and decreases in Bifidobacterium and Blautia were induced in the 3-week-old PNMS offspring. Notably, the overgrowth of Desulfovibrio persisted from the weaning period to adulthood, consistent with the results observed using fluorescence in situ hybridization in the colon mucosa. Mechanistically, the fecal microbiota transplantation experiment showed that the gut microbiota from the PNMS group impaired the intestinal barrier function and induced low-grade inflammation. The fecal bacterial solution from the PNMS group was more potent than that from the control group in inducing inflammation and gut barrier disruption in CaCo-2 cells. After treatment with a TNF-α inhibitor (adalimumab), no statistical difference in the indicators of inflammation and intestinal barrier function was observed between the two groups. Finally, exposure to PNMS remarkably increased the values of the histopathological parameters and the inflammatory cytokine production in a mouse model of experimental colitis in adulthood. These findings suggest that PNMS can inhibit intestinal development, impair the barrier function, and cause gut dysbiosis characterized by the persistent overgrowth of Desulfovibrio in the offspring, resulting in exacerbated experimental colitis in adulthood.
Assuntos
Colite/microbiologia , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/patologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Estresse Psicológico/fisiopatologia , Animais , Células CACO-2 , Colite/induzido quimicamente , Colite/terapia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Disbiose/microbiologia , Transplante de Microbiota Fecal , Fezes/microbiologia , Feminino , Humanos , Hibridização in Situ Fluorescente , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , GravidezRESUMO
Background and Purpose: The role of the cartilage oligomeric matrix protein (COMP) in epithelial-mesenchymal transition (EMT) in tumor progression has been studied, but its exact regulatory mechanism remains unknown. Methods: The interaction between COMP and the actin-binding protein transgelin (TAGLN) was identified by interaction protein prediction and co-immunoprecipitation and verified through the stochastic optical reconstruction microscopy (STORM) and duolink experiments. Western blot and immunofluorescence analyses were conducted to detect the changes in EMT-related markers after COMP overexpression and knockdown. Molecular docking and Biacore of the interaction interface of COMP/TAGLN revealed that Chrysin directly targeted COMP. The promotion of COMP and the Chrysin inhibition of EMT were detected through the cell migration, invasion, apoptosis, and xenotransplantation of nude mice. Results: COMP interacts with TAGLN in EMT in colorectal cancer to regulate cytoskeletal remodeling and promote malignant progression. COMP is highly expressed in highly malignant colorectal cancer and positively correlated with TAGLN expression. COMP knockdown can inhibit colorectal cancer metastasis and invasion, whereas COMP overexpression promotes EMT in colorectal cancer. Through virtual screening of the protein interaction interface, Chrysin, a flavonoid compound extracted from Oroxylum indicum, was found to have the highest docking score to the COMP/TAGLN complex. Chrysin inhibited COMP, thereby preventing EMT and the malignant progression of colorectal cancer. Conclusions: This study illustrated the role of COMP in EMT and suggested that COMP/TAGLN may be a potential tumor therapeutic target. Chrysin exhibits obvious antitumor effects. This work provides a preliminary antitumor therapy to target COMP or its interaction protein to inhibit EMT.
Assuntos
Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Flavonoides/farmacologia , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Animais , Proteína de Matriz Oligomérica de Cartilagem/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Camundongos , Proteínas dos Microfilamentos/química , Simulação de Acoplamento Molecular , Proteínas Musculares/química , Transplante de Neoplasias , Ligação Proteica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacosRESUMO
Inflammatory bowel disease (IBD) is an idiopathic inflammatory disease characterized by chronic and relapsing manifestations. It is noteworthy that the prevalence of IBD is gradually increasing in both children and adults. Currently, the pathogenesis of IBD remains to be completely elucidated. IBD is believed to occur through interactions among genetics, environmental factors, and the gut microbiota. However, the relapsing and remitting course of IBD underlines the importance of other modifiers, such as psychological stress. Growing evidence from clinical and experimental studies suggests that stress acts as a promoting or relapsing factor for IBD. Importantly, recent studies have reported an increasing incidence of anxiety or depression in both children and adults with IBD. In this article, we review the mechanisms by which stress affects IBD, such as via impaired intestinal barrier function, disturbance of the gut microbiota, intestinal dysmotility, and immune and neuroendocrine dysfunction. With regard to both children and adults, we provide recent evidence to describe how stress can affect IBD at various stages. Furthermore, we emphasize the importance of mental healing and discuss the value of approaches targeting stress in clinical management to develop enhanced strategies for the prevention and treatment of IBD.
RESUMO
High-fat diet, which leads to an increased level of deoxycholic acid (DCA) in the intestine, is a major environmental factor in the development of colorectal cancer (CRC). However, evidence relating to bile acids and intestinal tumorigenesis remains unclear. In this study, we investigated the effects of DCA on the intestinal mucosal barrier and its impact on the development of CRC. Here we showed that DCA disrupted cell monolayer integrity and increased proinflammatory cytokine production in intestinal cancer and precancerous cell lines (Caco-2 and IMCE). Apcmin/+ mice receiving DCA increased the number and size of intestinal adenomas and promoted the adenoma-adenocarcinoma sequence. Importantly, DCA induced the activation of the NLRP3 inflammasome, increased the production of inflammatory cytokines, and led to intestinal low grade inflammation. A reduction of tight junction protein zonula occludens 1 (ZO-1) and the number of intestinal cells including goblet cells and Paneth cells was also observed after DCA treatment. Moreover, DCA significantly reduced the level of secretory immunoglobulin A (sIgA), and promoted the polarization of M2 macrophages in the intestine of Apcmin/+ mice. In conclusion, these data suggested that DCA induced intestinal low grade inflammation and disrupted the mucosal physical and functional barriers, aggravating intestinal tumorigenesis.
Assuntos
Carcinogênese/efeitos dos fármacos , Neoplasias do Colo/patologia , Ácido Desoxicólico/toxicidade , Mucosa Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Animais , Células CACO-2 , Dieta Hiperlipídica/efeitos adversos , Feminino , Humanos , Imunoglobulina A Secretora/genética , Imunoglobulina A Secretora/metabolismo , Inflamassomos/metabolismo , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Intestinos/citologia , Camundongos , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismoRESUMO
Background: Accumulating evidence shows that high fat diet is closely associated with inflammatory bowel disease. However, the effects and underlying mechanisms of maternal high fat diet (MHFD) on the susceptibility of offspring to colitis in adulthood lacks confirmation. Methods: C57BL/6 pregnant mice were given either a high fat (60 E% fat, MHFD group) or control diet [10 E% fat, maternal control diet (MCD) group] during gestation and lactation. The intestinal development, mucosal barrier function, microbiota, and mucosal inflammation of 3-week old offspring were assessed. After weaning all mice were fed a control diet until 8 weeks of age when the microbiota was analyzed. Offspring were also treated with 2% DSS solution for 5 days and the severity of colitis was assessed. Results: The offspring in MHFD group were significantly heavier than those in MCD group only at 2-4 weeks of age, while no differences were found in the body weight between two groups at other measured time points. Compared with MCD group, MHFD significantly inhibited intestinal development and disrupted barrier function in 3-week old offspring. Although H&E staining showed no obvious microscopic inflammation in both groups of 3-week old offspring, increased production of inflammatory cytokines indicated low-grade inflammation was induced in MHFD group. Moreover, fecal analysis of the 3-week old offspring indicated that the microbiota compositions and diversity were significantly changed in MHFD group. Interestingly after 5 weeks consumption of control diet in both groups, the microbiota composition of offspring in MHFD group was still different from that in MCD group, although the bacterial diversity was partly recovered at 8 weeks of age. Finally, after DSS treatment in 8-week old offspring, MHFD significantly exacerbated the severity of colitis and increased the production of proinflammatory cytokine. Conclusions: Our data reveal that MHFD in early life can inhibit intestinal development, induce dysbiosis and low-grade inflammation and lead to the disruption of intestinal mucosal barrier in offspring, and enhance DSS-induced colitis in adulthood.
Assuntos
Colite/induzido quimicamente , Colite/microbiologia , Sulfato de Dextrana/farmacologia , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/fisiologia , Animais , Peso Corporal/fisiologia , Colite/fisiopatologia , Citocinas/metabolismo , Feminino , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/fisiopatologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , GravidezRESUMO
It is increasingly perceived that dietary components have been linked with the prevention of intestinal cancer. Cranberry is a rich source of phenolic constituents and non-digestible fermentable dietary fiber, which shows anti-proliferation effect in colorectal cancer cells. Herein, we investigated the efficacy of long-term cranberry diet on intestinal adenoma formation in Apcmin/+ mice. Apcmin/+ mice were fed a basal diet or a diet containing 20% (w/w) freeze-dried whole cranberry powder for 12 weeks, and the number and size of tumors were recorded after sacrifice. Our results showed that cranberry strongly prevented the growth of intestinal tumors by 33.1%. Decreased cell proliferation and increased apoptosis were observed in tumors of cranberry-fed mice. Cranberry diet reduced the expression profile of colonic inflammatory cytokines (IFN-γ, IL-1ß and TNF-α) accompanied with increased levels of anti-inflammatory cytokines (IL-4 and IL-10). Moreover, the number of colonic goblet cells and MUC2 production were increased, and the intestinal barrier function was also improved. In addition, cranberry diet increased caecal short chain fatty acids concentrations, and down-regulated epidermal growth factor receptor signaling pathway. These data firstly show the efficacy and associated mechanisms of cranberry diet on intestinal tumor growth in Apcmin/+ mice, suggesting its chemopreventive potential against intestinal cancer.