Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(10): 12967-12975, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36878728

RESUMO

Anode-free lithium (Li) metal batteries (AFLMBs) could provide a specific energy over 500 Wh/kg, but their cycle life requires improvement. In this work, we propose a new method to calculate the real Coulombic efficiency (CE) of the Li metal during the cycling of AFLMBs. Through this approach, we find low rate discharging unfavorable for Li CE, which is mitigated through electrolyte optimization. In contrast, high rate discharging boosts Li reversibility, indicating AFLMBs to be intrinsically suited for high power use cases. However, AFLMBs still fail rapidly, due to the Li stripping overpotential buildup, which is mitigated by a zinc coating that enables a better electron/ion transferring network. We believe well-targeted strategies need to be better developed to synergize with the intrinsic features of AFLMBs to enable their commercialization in the future.

2.
Front Optoelectron ; 15(1): 19, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-36637562

RESUMO

Sodium metal batteries (SMBs) are receiving broad attention due to the high specific capacity of sodium metal anodes and the material abundance on earth. However, the growth of dendrites results in poor battery performance and severe safety problems, inhibiting the commercial application of SMBs. To stabilize sodium metal anodes, various methods have been developed to optimize the solid electrolyte interphase (SEI) layer and adjust the electroplating/stripping behavior of sodium. Among the methods, developing anode host materials and adding electrolyte additives to build a protective layer are promising and convenient. However, the understanding of the interaction process between sodium metal and those organic materials is still limited, but is essential for the rational design of advanced anode hosts and electrolyte additives. In this study, we use copper(II) hexadecafluorophthalocyanine (F16CuPc), and copper(II) phthalocyanine (CuPc), as model systems to unravel the sodium interaction with polar functional groups by in-situ photoelectron spectroscopy and density functional theory (DFT) calculations. It is found that sodium atoms prefer to interact with the inner pyrrolic nitrogen sites of CuPc, while they prefer to interact with the outer aza bridge nitrogen atoms, owing to Na-F interaction at the Na/F16CuPc interface. Besides, for the both organic molecules, the central Cu(II) ions are reduced to Cu(I) ions by charge transfer from deposited sodium. The fluorine-containing groups are proven to promote the interaction process of sodium in organic materials, which sheds light on the design of functional interfaces in host materials and anode protective layers for sodium metal anodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA