Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 610(7930): 67-73, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36131017

RESUMO

The high volatility of the price of cobalt and the geopolitical limitations of cobalt mining have made the elimination of Co a pressing need for the automotive industry1. Owing to their high energy density and low-cost advantages, high-Ni and low-Co or Co-free (zero-Co) layered cathodes have become the most promising cathodes for next-generation lithium-ion batteries2,3. However, current high-Ni cathode materials, without exception, suffer severely from their intrinsic thermal and chemo-mechanical instabilities and insufficient cycle life. Here, by using a new compositionally complex (high-entropy) doping strategy, we successfully fabricate a high-Ni, zero-Co layered cathode that has extremely high thermal and cycling stability. Combining X-ray diffraction, transmission electron microscopy and nanotomography, we find that the cathode exhibits nearly zero volumetric change over a wide electrochemical window, resulting in greatly reduced lattice defects and local strain-induced cracks. In-situ heating experiments reveal that the thermal stability of the new cathode is significantly improved, reaching the level of the ultra-stable NMC-532. Owing to the considerably increased thermal stability and the zero volumetric change, it exhibits greatly improved capacity retention. This work, by resolving the long-standing safety and stability concerns for high-Ni, zero-Co cathode materials, offers a commercially viable cathode for safe, long-life lithium-ion batteries and a universal strategy for suppressing strain and phase transformation in intercalation electrodes.

2.
Nature ; 585(7823): 63-67, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32879503

RESUMO

Rechargeable lithium-ion batteries with high energy density that can be safely charged and discharged at high rates are desirable for electrified transportation and other applications1-3. However, the sub-optimal intercalation potentials of current anodes result in a trade-off between energy density, power and safety. Here we report that disordered rock salt4,5 Li3+xV2O5 can be used as a fast-charging anode that can reversibly cycle two lithium ions at an average voltage of about 0.6 volts versus a Li/Li+ reference electrode. The increased potential compared to graphite6,7 reduces the likelihood of lithium metal plating if proper charging controls are used, alleviating a major safety concern (short-circuiting related to Li dendrite growth). In addition, a lithium-ion battery with a disordered rock salt Li3V2O5 anode yields a cell voltage much higher than does a battery using a commercial fast-charging lithium titanate anode or other intercalation anode candidates (Li3VO4 and LiV0.5Ti0.5S2)8,9. Further, disordered rock salt Li3V2O5 can perform over 1,000 charge-discharge cycles with negligible capacity decay and exhibits exceptional rate capability, delivering over 40 per cent of its capacity in 20 seconds. We attribute the low voltage and high rate capability of disordered rock salt Li3V2O5 to a redistributive lithium intercalation mechanism with low energy barriers revealed via ab initio calculations. This low-potential, high-rate intercalation reaction can be used to identify other metal oxide anodes for fast-charging, long-life lithium-ion batteries.

3.
Proc Natl Acad Sci U S A ; 119(42): e2207326119, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215478

RESUMO

Electrochemical conversion of CO2 into formate is a promising strategy for mitigating the energy and environmental crisis, but simultaneously achieving high selectivity and activity of electrocatalysts remains challenging. Here, we report low-dimensional SnO2 quantum dots chemically coupled with ultrathin Ti3C2Tx MXene nanosheets (SnO2/MXene) that boost the CO2 conversion. The coupling structure is well visualized and verified by high-resolution electron tomography together with nanoscale scanning transmission X-ray microscopy and ptychography imaging. The catalyst achieves a large partial current density of -57.8 mA cm-2 and high Faradaic efficiency of 94% for formate formation. Additionally, the SnO2/MXene cathode shows excellent Zn-CO2 battery performance, with a maximum power density of 4.28 mW cm-2, an open-circuit voltage of 0.83 V, and superior rechargeability of 60 h. In situ X-ray absorption spectroscopy analysis and first-principles calculations reveal that this remarkable performance is attributed to the unique and stable structure of the SnO2/MXene, which can significantly reduce the reaction energy of CO2 hydrogenation to formate by increasing the surface coverage of adsorbed hydrogen.

4.
Nano Lett ; 24(18): 5429-5435, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38682885

RESUMO

Realizing room-temperature, efficient, and reversible fluoride-ion redox is critical to commercializing the fluoride-ion battery, a promising post-lithium-ion battery technology. However, this is challenging due to the absence of usable electrolytes, which usually suffer from insufficient ionic conductivity and poor (electro)chemical stability. Herein we report a water-in-salt (WIS) electrolyte based on the tetramethylammonium fluoride salt, an organic salt consisting of hydrophobic cations and hydrophilic anions. The new WIS electrolyte exhibits an electrochemical stability window of 2.47 V (2.08-4.55 V vs Li+/Li) with a room-temperature ionic conductivity of 30.6 mS/cm and a fluoride-ion transference number of 0.479, enabling reversible (de)fluoridation redox of lead and copper fluoride electrodes. The relationship between the salt property, the solvation structure, and the ionic transport behavior is jointly revealed by computational simulations and spectroscopic analysis.

5.
Nano Lett ; 24(25): 7645-7653, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38875704

RESUMO

Understanding the nucleation and growth mechanism of 3d transition bimetallic nanocrystals (NCs) is crucial to developing NCs with tailored nanostructures and properties. However, it remains a significant challenge due to the complexity of 3d bimetallic NCs formation and their sensitivity to oxygen. Here, by combining in situ electron microscopy and synchrotron X-ray techniques, we elucidate the nucleation and growth pathways of Fe-Ni NCs. Interestingly, the formation of Fe-Ni NCs emerges from the assimilation of Fe into Ni clusters together with the reduction of Fe-Ni oxides. Subsequently, these NCs undergo solid-state phase transitions, resulting in two distinct solid solutions, ultimately dominated by γ-Fe3Ni2. Furthermore, we deconvolve the interplays between local coordination and electronic state concerning the growth temperature. We directly visualize the oxidation-state distributions of Fe and Ni at the nanoscale and investigate their changes. This work may reshape and enhance the understanding of nucleation and growth in atomic crystallization.

6.
J Am Chem Soc ; 146(26): 17712-17718, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38874441

RESUMO

The ever-increasing demand for safety has thrust all-solid-state batteries (ASSBs) into the forefront of next-generation energy storage technologies. However, the atomic mechanisms underlying the failure of layered cathodes in ASSBs, as opposed to their counterparts in liquid electrolyte-based lithium-ion batteries (LIBs), have remained elusive. Here, leveraging artificial intelligence-enhanced super-resolution electron microscopy, we unravel the atomic origins dictating the chemomechanical degradation of technologically crucial high-Ni layered oxide cathodes in ASSBs. We reveal that the coupling of surface frustration and interlayer-shear-induced phase transformation exacerbates the chemomechanical breakdown of layered cathodes. Surface frustration, a phenomenon previously unobserved in liquid electrolyte-based LIBs, emerges through electrochemical processes involving surface nanocrystallization coupled with rock salt transformation. Simultaneously, delithiation-induced interlayer shear yields the formation of chunky O1 phases and intricate interfaces/transition motifs, distinct from scenarios observed in liquid electrolyte-based LIBs. Bridging the knowledge gap between the failure mechanisms of layered cathodes in solid-state electrolytes and conventional liquid electrolytes, our study provides unprecedented atomic-scale insights into the degradation pathways of layered cathodes in ASSBs.

7.
Nat Mater ; 22(2): 235-241, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36702885

RESUMO

High-Ni-content layered materials are promising cathodes for next-generation lithium-ion batteries. However, investigating the atomic configurations of the delithiation-induced complex phase boundaries and their transitions remains challenging. Here, by using deep-learning-aided super-resolution electron microscopy, we resolve the intralayer transition motifs at complex phase boundaries in high-Ni cathodes. We reveal that an O3 → O1 transformation driven by delithiation leads to the formation of two types of O1-O3 interface, the continuous- and abrupt-transition interfaces. The interfacial misfit is accommodated by a continuous shear-transition zone and an abrupt structural unit, respectively. Atomic-scale simulations show that uneven in-plane Li+ distribution contributes to the formation of both types of interface, and the abrupt transition is energetically more favourable in a delithiated state where O1 is dominant, or when there is an uneven in-plane Li+ distribution in a delithiated O3 lattice. Moreover, a twin-like motif that introduces structural units analogous to the abrupt-type O1-O3 interface is also uncovered. The structural transition motifs resolved in this study provide further understanding of shear-induced phase transformations and phase boundaries in high-Ni layered cathodes.

8.
Nano Lett ; 23(17): 8272-8279, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37643420

RESUMO

Phase transformation─a universal phenomenon in materials─plays a key role in determining their properties. Resolving complex phase domains in materials is critical to fostering a new fundamental understanding that facilitates new material development. So far, although conventional classification strategies such as order-parameter methods have been developed to distinguish remarkably disparate phases, highly accurate and efficient phase segmentation for material systems composed of multiphases remains unavailable. Here, by coupling hard-attention-enhanced U-Net network and geometry simulation with atomic-resolution transmission electron microscopy, we successfully developed a deep-learning tool enabling automated atom-by-atom phase segmentation of intertwined phase domains in technologically important cathode materials for lithium-ion batteries. The new strategy outperforms traditional methods and quantitatively elucidates the correlation between the multiple phases formed during battery operation. Our work demonstrates how deep learning can be employed to foster an in-depth understanding of phase transformation-related key issues in complex materials.

9.
Angew Chem Int Ed Engl ; 63(14): e202319427, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38355900

RESUMO

Solid polymer electrolytes based on plastic crystals are promising for solid-state sodium metal (Na0) batteries, yet their practicality has been hindered by the notorious Na0-electrolyte interface instability issue, the underlying cause of which remains poorly understood. Here, by leveraging a model plasticized polymer electrolyte based on conventional succinonitrile plastic crystals, we uncover its failure origin in Na0 batteries is associated with the formation of a thick and non-uniform solid electrolyte interphase (SEI) and whiskery Na0 nucleation/growth. Furthermore, we design a new additive-embedded plasticized polymer electrolyte to manipulate the Na0 deposition and SEI formulation. For the first time, we demonstrate that introducing fluoroethylene carbonate (FEC) additive into the succinonitrile-plasticized polymer electrolyte can effectively protect Na0 against interfacial corrosion by facilitating the growth of dome-like Na0 with thin, amorphous, and fluorine-rich SEIs, thus enabling significantly improved performances of Na//Na symmetric cells (1,800 h at 0.5 mA cm-2) and Na//Na3V2(PO4)3 full cells (93.0 % capacity retention after 1,200 cycles at 1 C rate in coin cells and 93.1 % capacity retention after 250 cycles at C/3 in pouch cells at room temperature). Our work provides valuable insights into the interfacial failure of plasticized polymer electrolytes and offers a promising solution to resolving the interfacial instability issue.

10.
Small ; 19(2): e2205719, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36373671

RESUMO

Exploiting active and stable non-precious metal electrocatalysts for alkaline hydrogen evolution reaction (HER) at large current density plays a key role in realizing large-scale industrial hydrogen generation. Herein, a self-supported microporous Ni(OH)x/Ni3 S2 heterostructure electrocatalyst on nickel foam (Ni(OH)x/Ni3 S2 /NF) that possesses super-hydrophilic property through an electrochemical process is rationally designed and fabricated. Benefiting from the super-hydrophilic property, microporous feature, and self-supported structure, the electrocatalyst exhibits an exceptional HER performance at large current density in 1.0 M KOH, only requiring low overpotential of 126, 193, and 238 mV to reach a current density of 100, 500, and 1000 mA cm-2 , respectively, and displaying a long-term durability up to 1000 h, which is among the state-of-the-art non-precious metal electrocatalysts. Combining hard X-rays absorption spectroscopy and first-principles calculation, it also reveals that the strong electronic coupling at the interface of the heterostructure facilitates the dissociation of H2 O molecular, accelerating the HER kinetics in alkaline electrolyte. This work sheds a light on developing advanced non-precious metal electrocatalysts for industrial hydrogen production by means of constructing a super-hydrophilic microporous heterostructure.

11.
Small ; 19(8): e2206071, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36504446

RESUMO

Atomically dispersed nitrogen-coordinated 3d transition-metal site on carbon support (M-NC) are promising alternatives to Pt group metal-based catalysts toward oxygen reduction reaction (ORR). However, despite the excellent activities of most of M-NC catalysts, such as Fe-NC, Co-NC et al., their durability is far from satisfactory due to Fenton reaction. Herein, this work reports a novel Si-doped Ni-NC catalyst (Ni-SiNC) that possesses high activity and excellent stability. X-ray absorption fine structure and aberration-corrected transmission electron microscopy uncover that the single-atom Ni site is coordinated with one Si atom and three N atoms, constructing Ni-Si1 N3  moiety. The Ni-SiNC catalyst exhibits a half-wave potential (E1/2 ) of 0.866 V versus RHE, with a distinguished long-term durability in alkaline media of only 10 mV negative shift in E1/2  after 35 000 cycles, which is also validated in Zn-air battery. Density functional theory calculations reveal that the Ni-Si1 N3  moiety facilitates ORR kinetics through optimizing the adsorption of intermediates.

12.
Small ; 19(34): e2301610, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093206

RESUMO

Bimetallic layered double hydroxides (LDHs) are promising catalysts for anodic oxygen evolution reaction (OER) in alkaline media. Despite good stability, NiCo LDH displays an unsatisfactory OER activity relative to the most robust NiFe LDH and CoFe LDH. Herein, a novel NiCo LDH electrocatalyst modified with single-atom silver grown on carbon cloth (AgSA -NiCo LDH/CC) that exhibits exceptional OER activity and stability in 1.0 m KOH is reported. The AgSA -NiCo LDH/CC catalyst only requires a low overpotential of 192 mV to reach a current density of 10 mA cm-2 , obviously boosting the OER activity of NiCo LDH/CC (410 mV@10 mA cm-2 ). Inspiringly, AgSA -NiCo LDH/CC can maintain its high activity for up to 500 h at a large current density of 100 mA cm-2 , exceeding most single-atom OER catalysts. In situ Raman spectroscopy studies uncover that the in situ formed NiCoOOH during OER is the real active species. Hard X-ray absorption spectrum (XAS) and density functional theory (DFT) calculations validate that single-atom Ag occupying Ni site increases the chemical valence of Ni elements, and then weakens the adsorption of oxygen-contained intermediates on Ni sites, fundamentally accounting for the enhanced OER performance.

13.
Nat Mater ; 21(6): 681-688, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35606427

RESUMO

Atomically dispersed single-atom catalysts have the potential to bridge heterogeneous and homogeneous catalysis. Dozens of single-atom catalysts have been developed, and they exhibit notable catalytic activity and selectivity that are not achievable on metal surfaces. Although promising, there is limited knowledge about the boundaries for the monometallic single-atom phase space, not to mention multimetallic phase spaces. Here, single-atom catalysts based on 37 monometallic elements are synthesized using a dissolution-and-carbonization method, characterized and analysed to build the largest reported library of single-atom catalysts. In conjunction with in situ studies, we uncover unified principles on the oxidation state, coordination number, bond length, coordination element and metal loading of single atoms to guide the design of single-atom catalysts with atomically dispersed atoms anchored on N-doped carbon. We utilize the library to open up complex multimetallic phase spaces for single-atom catalysts and demonstrate that there is no fundamental limit on using single-atom anchor sites as structural units to assemble concentration-complex single-atom catalyst materials with up to 12 different elements. Our work offers a single-atom library spanning from monometallic to concentration-complex multimetallic materials for the rational design of single-atom catalysts.

14.
Chem Rev ; 121(10): 5986-6056, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33861070

RESUMO

Lithium (Li) metal, a typical alkaline metal, has been hailed as the "holy grail" anode material for next generation batteries owing to its high theoretical capacity and low redox reaction potential. However, the uncontrolled Li plating/stripping issue of Li metal anodes, associated with polymorphous Li formation, "dead Li" accumulation, poor Coulombic efficiency, inferior cyclic stability, and hazardous safety risks (such as explosion), remains as one major roadblock for their practical applications. In principle, polymorphous Li deposits on Li metal anodes includes smooth Li (film-like Li) and a group of irregularly patterned Li (e.g., whisker-like Li (Li whiskers), moss-like Li (Li mosses), tree-like Li (Li dendrites), and their combinations). The nucleation and growth of these Li polymorphs are dominantly dependent on multiphysical fields, involving the ionic concentration field, electric field, stress field, and temperature field, etc. This review provides a clear picture and in-depth discussion on the classification and initiation/growth mechanisms of polymorphous Li from the new perspective of multiphysical fields, particularly for irregular Li patterns. Specifically, we discuss the impact of multiphysical fields' distribution and intensity on Li plating behavior as well as their connection with the electrochemical and metallurgical properties of Li metal and some other factors (e.g., electrolyte composition, solid electrolyte interphase (SEI) layer, and initial nuclei states). Accordingly, the studies on the progress for delaying/suppressing/redirecting irregular Li evolution to enhance the stability and safety performance of Li metal batteries are reviewed, which are also categorized based on the multiphysical fields. Finally, an overview of the existing challenges and the future development directions of metal anodes are summarized and prospected.

15.
Nano Lett ; 22(9): 3818-3824, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35471058

RESUMO

The rapidly growing demand of electrical vehicles (EVs) requires high-energy-density lithium-ion batteries (LIBs) with excellent cycling stability and safety performance. However, conventional polycrystalline high-Ni cathodes severely suffer from intrinsic chemomechanical degradation and fast capacity fade. The emerging single-crystallization strategy offers a promising pathway to improve the cathode's chemomechanical stability; however, the single-crystallinity of the cathode is not always guaranteed, and residual grain boundaries (GBs) could persist in nonideal synthesis conditions, leading to the formation of "quasi-single-crystalline" (QSC) cathodes. So far, there has been a lack of understanding of the influence of these residual GBs on the electrochemical performance and structural stability. Herein, we investigate the degradation pathway of a QSC high-Ni cathode through transmission electron microscopy and X-ray techniques. The residual GBs caused by insufficient calcination time dramatically exacerbate the cathode's chemomechanical instability and cycling performance. Our work offers important guidance for next-generation cathodes for long-life LIBs.

16.
Nano Lett ; 22(18): 7535-7544, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36070490

RESUMO

The rechargeability of aqueous zinc metal batteries is plagued by parasitic reactions of the zinc metal anode and detrimental morphologies such as dendritic or dead zinc. To improve the zinc metal reversibility, hereby we report a new solution structure of aqueous electrolyte with hydroxyl-ion scavengers and hydrophobicity localized in solvent clusters. We show that although hydrophobicity sounds counterintuitive for an aqueous system, hydrophilic pockets may be encapsulated inside a hydrophobic outer layer, and a hydrophobic anode-electrolyte interface can be generated through the addition of a cation-philic, strongly anion-phobic, and OH--reactive diluent. The localized hydrophobicity enables less active water and less absorbed water on the Zn anode surface, which suppresses the parasitic water reduction; while the hydroxyl-ion-scavenging functionality further minimizes undesired passivation layer formation, thus leading to superior reversibility (an average Zn plating/stripping efficiency of 99.72% for 1000 cycles) and lifetime (80.6% capacity retention after 5000 cycles) of zinc batteries.


Assuntos
Eletrólitos , Zinco , Ânions , Cátions , Interações Hidrofóbicas e Hidrofílicas , Solventes , Água
17.
Angew Chem Int Ed Engl ; 62(38): e202308309, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37548104

RESUMO

Single Li+ ion conducting polyelectrolytes (SICs), which feature covalently tethered counter-anions along their backbone, have the potential to mitigate dendrite formation by reducing concentration polarization and preventing salt depletion. However, due to their low ionic conductivity and complicated synthetic procedure, the successful validation of these claimed advantages in lithium metal (Li0 ) anode batteries remains limited. In this study, we fabricated a SIC electrolyte using a single-step UV polymerization approach. The resulting electrolyte exhibited a high Li+ transference number (t+ ) of 0.85 and demonstrated good Li+ conductivity (6.3×10-5  S/cm at room temperature), which is comparable to that of a benchmark dual ion conductor (DIC, 9.1×10-5  S/cm). Benefitting from the high transference number of SIC, it displayed a three-fold higher critical current density (2.4 mA/cm2 ) compared to DIC (0.8 mA/cm2 ) by successfully suppressing concentration polarization-induced short-circuiting. Additionally, the t+ significantly influenced the deposition behavior of Li0 , with SIC yielding a uniform, compact, and mosaic-like morphology, while the low t+ DIC resulted in a porous morphology with Li0 whiskers. Using the SIC electrolyte, Li0 ||LiFePO4 cells exhibited stable operation for 4500 cycles with 70.5 % capacity retention at 22 °C.

18.
Angew Chem Int Ed Engl ; 62(28): e202304628, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37139583

RESUMO

Deep sodium extraction/insertion of sodium cathodes usually causes undesired Jahn-Teller distortion and phase transition, both of which will reduce structural stability and lead to poor long-cycle reliability. Here we report a zero-strain P2- Na2/3 Li1/6 Co1/6 Mn2/3 O2 cathode, in which the lithium/cobalt substitution contributes to reinforcing the host structure by reducing the Mn3+ /Mn4+ redox, mitigating the Jahn-Teller distortion, and minimizing the lattice change. 94.5 % of Na+ in the unit structure can be reversibly cycled with a charge cut-off voltage of 4.5 V (vs. Na+ /Na). Impressively, a solid-solution reaction without phase transitions is realized upon deep sodium (de)intercalation, which poses a minimal volume deviation of 0.53 %. It attains a high discharge capacity of 178 mAh g-1 , a high energy density of 534 Wh kg-1 , and excellent capacity retention of 95.8 % at 1 C after 250 cycles.

19.
J Am Chem Soc ; 144(5): 2197-2207, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35089019

RESUMO

Single-atom catalysts based on metal-N4 moieties and anchored on carbon supports (defined as M-N-C) are promising for oxygen reduction reaction (ORR). Among those, M-N-C catalysts with 4d and 5d transition metal (TM4d,5d) centers are much more durable and not susceptible to the undesirable Fenton reaction, especially compared with 3d transition metal based ones. However, the ORR activity of these TM4d,5d-N-C catalysts is still far from satisfactory; thus far, there are few discussions about how to accurately tune the ligand fields of single-atom TM4d,5d sites in order to improve their catalytic properties. Herein, we leverage single-atom Ru-N-C as a model system and report an S-anion coordination strategy to modulate the catalyst's structure and ORR performance. The S anions are identified to bond with N atoms in the second coordination shell of Ru centers, which allows us to manipulate the electronic configuration of central Ru sites. The S-anion-coordinated Ru-N-C catalyst delivers not only promising ORR activity but also outstanding long-term durability, superior to those of commercial Pt/C and most of the near-term single-atom catalysts. DFT calculations reveal that the high ORR activity is attributed to the lower adsorption energy of ORR intermediates at Ru sites. Metal-air batteries using this catalyst in the cathode side also exhibit fast kinetics and excellent stability.

20.
Nature ; 538(7623): 79-83, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27556943

RESUMO

Patterning of colloidal particles with chemically or topographically distinct surface domains (patches) has attracted intense research interest. Surface-patterned particles act as colloidal analogues of atoms and molecules, serve as model systems in studies of phase transitions in liquid systems, behave as 'colloidal surfactants' and function as templates for the synthesis of hybrid particles. The generation of micrometre- and submicrometre-sized patchy colloids is now efficient, but surface patterning of inorganic colloidal nanoparticles with dimensions of the order of tens of nanometres is uncommon. Such nanoparticles exhibit size- and shape-dependent optical, electronic and magnetic properties, and their assemblies show new collective properties. At present, nanoparticle patterning is limited to the generation of two-patch nanoparticles, and nanoparticles with surface ripples or a 'raspberry' surface morphology. Here we demonstrate nanoparticle surface patterning, which utilizes thermodynamically driven segregation of polymer ligands from a uniform polymer brush into surface-pinned micelles following a change in solvent quality. Patch formation is reversible but can be permanently preserved using a photocrosslinking step. The methodology offers the ability to control the dimensions of patches, their spatial distribution and the number of patches per nanoparticle, in agreement with a theoretical model. The versatility of the strategy is demonstrated by patterning nanoparticles with different dimensions, shapes and compositions, tethered with various types of polymers and subjected to different external stimuli. These patchy nanocolloids have potential applications in fundamental research, the self-assembly of nanomaterials, diagnostics, sensing and colloidal stabilization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA