Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(24): e2308863, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38287727

RESUMO

Ternary organic solar cells (T-OSCs) have attracted significant attention as high-performance devices. In recent years, T-OSCs have achieved remarkable progress with power conversion efficiency (PCE) exceeding 19%. However, the introduction of the third component complicates the intermolecular interaction compared to the binary blend, resulting in poor controllability of active layer and limiting performance improvement. To address these issues, dual-functional third components have been developed that not only broaden the spectral range but also optimize morphology. In this review, the effect of the third component on expanding the absorption range of T-OSCs is first discussed. Second, the extra functions of the third component are introduced, including adjusting the crystallinity and molecular stack in active layer, regulating phase separation and purity, altering molecular orientation of the donor or acceptor. Finally, a summary of the current research progress is provided, followed by a discussion of future research directions.

2.
Small ; 18(17): e2200608, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35344263

RESUMO

Controlled morphology of solution-processed thin films have realized impressive achievements for non-fullerene acceptor (NFA)-based organic solar cells (OSCs). Given the large set of donor-acceptor pairs, employing various processing conditions to realize optimal morphology for high efficiency and stable OSCs is a strenuous task. Therefore, comprehensive correlations between processing conditions and morphology evolution pathways have to be developed for efficient performance and stability of devices. Within the framework of the blend system, crystallization transitions of NFA molecules are tracked utilizing the first heating scan of differential scanning calorimeter (DSC) measurement correlating with respective morphology evolution of blend films. Real-time dynamics measurements and morphology characterizations are combined to provide optimal morphology transition pathways as NFA molecules are shown to be released from the mixed-phase to form balanced ordered packing with variant processing conditions. Polymer:NFA films are fabricated using blade coating incorporating solvent additive or thermal annealing as processing conditions as a correlation is formulated between performance and stability of solar cells with morphology transition pathways. This work demonstrates the significance of processing condition-controlled transition pathways for the realization of optimal morphology leading to superior OSC devices.

3.
Angew Chem Int Ed Engl ; 61(38): e202208383, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-35869870

RESUMO

Efficient cathode interfacial layers (CILs) are becoming essential elements for organic solar cells (OSCs). However, the absorption of commonly used cathode interfacial materials (CIMs) is either too weak or overlaps too much with that of photoactive materials, hindering their contribution to the light absorption. In this work, we demonstrate the construction of highly efficient CIMs based on 2,7-di-tert-butyl-4,5,9,10-pyrene diimide (t-PyDI) framework. By introducing amino, amino N-oxide and quaternary ammonium bromide as functional groups, three novel self-doped CIMs named t-PyDIN, t-PyDINO and t-PyDINBr are synthesized. These CIMs are capable of boosting the device performances by broadening the absorption, forming ohmic contact at the interface of active layer and electrode, as well as facilitating electron collection. Notably, the device based on t-PyDIN achieved a power conversion efficiency of 18.25 %, which is among the top efficiencies reported to date in binary OSCs.

4.
Small ; 17(21): e2007011, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33719196

RESUMO

Promoting efficiency, deformability, and life expectancy of stretchable organic solar cells (OSCs) have always been key concerns that researchers are committed to solving. However, how to improve them simultaneously remains challenging, as morphology parameters, such as ordered molecular arrangement, beneficial for highly efficient devices actually limits mechanical stability and deformability. In this study, the unfavorable trade-off among these properties has been reconciled in an all-polymer model system utilizing a mechanically deformable guest component. The success of this strategy stems from introducing a highly ductile component without compromising the pristine optimized morphology. Preferable interaction between two donors can maintain the fiber-like structure while enhancing the photocurrent to improve efficiency. Morphology evolution detected via grazing incidence X-ray scattering and in situ UV-vis absorption spectra during stretching have verified the critical role of strengthened interaction on stabilizing morphology against external forces. The strengthened interaction also benefits thermal stability, enabling the ternary films with small efficiency degradation after heating 1500 h under 80 °C. This work highlights the effect of morphology evolution on mechanical stability and provides new insights from the view of intermolecular interaction to fabricate highly efficient, stable, and stretchable/wearable OSCs.

5.
J Am Chem Soc ; 141(19): 7743-7750, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31017418

RESUMO

Although significant improvements have been achieved for organic photovoltaic cells (OPVs), the top-performing devices still show power conversion efficiencies far behind those of commercialized solar cells. One of the main reasons is the large driving force required for separating electron-hole pairs. Here, we demonstrate an efficiency of 14.7% in the single-junction OPV by using a new polymer donor PTO2 and a nonfullerene acceptor IT-4F. The device possesses an efficient charge generation at a low driving force. Ultrafast transient absorption measurements probe the formation of loosely bound charge pairs with extended lifetime that impedes the recombination of charge carriers in the blend. The theoretical studies reveal that the molecular electrostatic potential (ESP) between PTO2 and IT-4F is large, and the induced intermolecular electric field may assist the charge generation. The results suggest OPVs have the potential for further improvement by judicious modulation of ESP.


Assuntos
Fontes de Energia Elétrica , Compostos Orgânicos/química , Energia Solar , Eletricidade Estática , Transporte de Elétrons , Fulerenos/química , Modelos Moleculares , Conformação Molecular , Polímeros/química
6.
J Am Chem Soc ; 139(6): 2387-2395, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28127955

RESUMO

Ternary organic solar cells (OSCs) have attracted much research attention in the past few years, as ternary organic blends can broaden the absorption range of OSCs without the use of complicated tandem cell structures. Despite their broadened absorption range, the light harvesting capability of ternary OSCs is still limited because most ternary OSCs use thin active layers of about 100 nm in thickness, which is not sufficient to absorb all photons in their spectral range and may also cause problems for future roll-to-roll mass production that requires thick active layers. In this paper, we report a highly efficient ternary OSC (11.40%) obtained by incorporating a nematic liquid crystalline small molecule (named benzodithiophene terthiophene rhodanine (BTR)) into a state-of-the-art PTB7-Th:PC71BM binary system. The addition of BTR into PTB7-Th:PC71BM was found to improve the morphology of the blend film with decreased π-π stacking distance, enlarged coherence length, and enhanced domain purity. This resulted in more efficient charge separation, faster charge transport, and less bimolecular recombination, which, when combined, led to better device performance even with thick active layers. Our results show that the introduction of highly crystalline small molecule donors into ternary OSCs is an effective means to enhance the charge transport and thus increase the active layer thickness of ternary OSCs to make them more suitable for roll-to-roll production than previous thinner devices.

7.
Small Methods ; : e2301803, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386309

RESUMO

Organic solar cells (OSCs) are considered as a promising new generation of clean energy. Bulk heterojunction (BHJ) structure has been widely employed in the active layer of efficient OSCs. However, precise regulation of morphology in BHJ is still challenging due to the competitive coupling between crystallization and phase separation. Recently, a novel pseudo-planar heterojunction (PPHJ) structure, prepared through solution sequential deposition, has attracted much attention. It is an easy-to-prepare structure in which the phase separation structures, interfaces, and molecular packing can be separately controlled. Employing PPHJ structure, the properties of OSCs, such as power conversion efficiency, stability, transparency, flexibility, and so on, are usually better than its BHJ counterpart. Hence, a comprehensive understanding of the film-forming process, morphology control, and device performance of PPHJ structure should be considered. In terms of the representative works about PPHJ, this review first introduces the fabrication process of active layers based on PPHJ structure. Second, the widely applied morphology control methods in PPHJ structure are summarized. Then, the influences of PPHJ structure on device performance and other property are reviewed, which largely expand its application. Finally, a brief prospect and development tendency of PPHJ devices are discussed with the consideration of their challenges.

8.
Sci Adv ; 9(13): eadf6152, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36989368

RESUMO

High-sensitivity organic photodetectors (OPDs) with strong near-infrared (NIR) photoresponse have attracted enormous attention due to potential applications in emerging technologies. However, few organic semiconductors have been reported with photoelectric response beyond ~1.1 µm, the detection limit of silicon detectors. Here, we extend the absorption of organic small-molecule semiconductors to below silicon bandgap, and even to 0.77 eV, through introducing the newly designed quinoid-terminals with high Mulliken-electronegativity (5.62 eV). The fabricated photodiode-type NIR OPDs exhibit detectivity (D*) over 1012 Jones in 0.41 to 1.2 µm under zero bias with a maximum of 2.9 × 1012 Jones at 1.02 µm, which is the highest D* for reported OPDs in photovoltaic-mode with response spectra beyond 1.1 µm. The high D* in 0.9 to 1.2 µm is comparable to those of commercial InGaAs photodetectors, despite the detection limit of our OPDs is shorter than InGaAs (~1.7 µm). A spectrometer prototype with a wide measurable region (0.4 to 1.25 µm) and NIR imaging under 1.2-µm illumination are demonstrated successfully in OPDs.

9.
Adv Mater ; 34(14): e2110155, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35092105

RESUMO

The power conversion efficiencies (PCEs) of small molecule acceptor (SMA)-based organic solar cells have already exceeded 18%. However, the development of polymer acceptors still lags far behind their SMA counterparts mainly due to the lack of efficient polymer acceptors. Herein, a series of polymer acceptors named PY-X (with X being the branched alkyl chain) are designed and synthesized by employing the same central core with the SMA L8-BO but with different branched alkyl chains on the pyrrole motif. It is found that the molecular packing of SMA-HD featuring 2-hexyldecyl side chain used in the synthesis of PY-HD is similar to L8-BO, in which the branched alkyl chains lead to condensed and high-order molecular assembly in SMA-HD molecules. When combined with PM6, PY-HD-based all polymer solar cell (all-PSC) exhibits a high PCE of 16.41%, representing the highest efficiency for the binary all-PSCs. Moreover, the side-chain modification on the pyrrole site position further improves the performance of the all-PSCs, and the PY-DT-based device delivers a new record high efficiency of 16.76% (certified as 16.3%). The work provides new insights for understanding the structure-property relationship of polymer acceptors and paves a feasible avenue to develop efficient conjugated polymer acceptors.

10.
Nat Commun ; 13(1): 5267, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071034

RESUMO

The polymerized small-molecule acceptors have attracted great attention for application as polymer acceptor in all-polymer solar cells recently. The modification of small molecule acceptor building block and the π-bridge linker is an effective strategy to improve the photovoltaic performance of the polymer acceptors. In this work, we synthesized a new polymer acceptor PG-IT2F which is a modification of the representative polymer acceptor PY-IT by replacing its upper linear alkyl side chains on the small molecule building block with branched alkyl chains and attaching difluorene substituents on its thiophene π-bridge linker. Through this synergistic optimization, PG-IT2F possesses more suitable phase separation, increased charge transportation, better exciton dissociation, lower bimolecular recombination, and longer charge transfer state lifetime than PY-IT in their polymer solar cells with PM6 as polymer donor. Therefore, the devices based on PM6:PG-IT2F demonstrated a high power conversion efficiency of 17.24%, which is one of the highest efficiency reported for the binary all polymer solar cells to date. This work indicates that the synergistic regulation of small molecule acceptor building block and π-bridge linker plays a key role in designing and developing highly efficient polymer acceptors.

11.
ACS Appl Mater Interfaces ; 13(37): 44604-44614, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34499484

RESUMO

Efficient indoor organic photovoltaics (OPVs) have attracted strong attention for their application in indoor electronic devices. However, the route to optimal photoactive film morphology toward high-performance indoor devices has remained obscure. The leakage current dominated by morphology exerts distinguishing influence on the performance under different illuminations. We have demonstrated that morphology reoptimization plays an important role in indoor OPVs, and their optimal structural features are different from what we laid out for outdoor devices. For indoor OPVs, in order to facilitate low leakage current, it is essential to enhance the crystallinity, phase separation, and domain purity, as well as keeping small surface roughness of the active layer. Furthermore, considering the reduced bimolecular recombination at low light intensity, we have shown that PM6:M36-based indoor devices can work effectively with a large ratio of the donor and acceptor. Our work correlating structure-performance relation and the route to optimal morphology outlines the control over device leakage current and recombination losses boosting the progress of efficient indoor OPVs.

12.
Adv Mater ; 32(21): e2000645, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32285551

RESUMO

A new fluorinated electron acceptor (FINIC) based on 6,6,12,12-tetrakis(3-fluoro-4-hexylphenyl)-indacenobis(dithieno[3,2-b;2',3'-d]thiophene) as the electron-donating central core and 5,6-difluoro-3-(1,1-dicyanomethylene)-1-indanone as the electron-deficient end groups is rationally designed and synthesized. FINIC shows similar absorption profile in dilute solution to the nonfluorinated analogue INIC. However, compared with INIC, FINIC film shows red-shifted absorption, down-shifted frontier molecular orbital energy levels, enhanced crystallinity, and more ordered molecular packing. Single-crystal structure data show that FINIC molecules pack into closer 3D "network" motif through H-bonding and π-π interaction, while INIC molecules pack into incompact "honeycomb" motif through only π-π stacking. Theoretical calculations reveal that FINIC has stronger electronic coupling and more molecular interactions than INIC. FINIC has higher electron mobilities in both horizontal and vertical directions than INIC. Moreover, FINIC and INIC support efficient 3D exciton transport. PBD-SF/FINIC blend has a larger driving force for exciton splitting, more efficient charge transfer and photoinduced charge generation. Finally, the organic solar cells based on PBD-SF/FINIC blend yield power conversion efficiency of 14.0%, far exceeding that of the PBD-SF/INIC-based devices (5.1%).

13.
ACS Appl Mater Interfaces ; 11(1): 766-773, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30525389

RESUMO

In this article, we report 13%-efficiency quaternary polymer solar cell. By introducing bis-PC71BM:PC71BM into a known nonfullerene system-poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl))benzo[1,2- b:4,5- b']dithiophene)- co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)benzo[1,2- c:4,5- c']dithiophene-4,8-dione):3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone-methyl))-5,5,11,11-tetrakis(4- n-hexylphenyl)-dithieno[2,3 d:2',3' d']- s-indaceno[1,2 b:5,6 b']dithiophene (PBDB-T:IT-M), the quaternary solar cell significantly outperforms the nonfullerene binary and the ternary (PBDB-T:IT-M:fullerene) devices with a significant increase in the short-circuit current-density (18.2 vs 16.5 and 16.8-17.5 mA/cm2) and the fill factor (0.73 vs 0.67 and 0.707-0.726), and hence, large power conversion efficiency (13% for quaternary vs 11% for the binary and 12% for the ternary). Grazing incidence wide-angle X-ray scattering data indicate that both the polymer and IT-M phase crystallinity becomes greater upon introduction of PC71BM as the forth additive into the host ternary PBDB-T:IT-M:bis-PC71BM, which results in an increase in both the electron and hole mobilities, contributing to the Jsc enhancement. Our results indicate that the use of the forth fullerene component provides more choices and more mechanisms than the ternary systems for tuning the photon-to-electron conversion; therefore, sheds light on the realization of high-efficiency polymer solar cells by designing the multiacceptor components with aligned energy levels, complementary absorption spectra, and improved film morphologies.

14.
ACS Omega ; 3(7): 7603-7612, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458912

RESUMO

The nanoscale interpenetrating network of active layer plays a key role in determining the exciton dissociation and charge transport in all small-molecule nonfullerene solar cells (AS-NFSCs). However, fabricating interpenetrating networks in all small-molecule blends remains a critical hurdle due to the uncontrolled crystallization behavior of small molecules. In this study, we proposed that the balanced crystal size between the donor and the acceptor is an essential prerequisite to construct optimal interpenetrating networks. We also provided a solvent additive strategy to reduce the gap of crystal size between the donor and the acceptor in S-TR:ITIC all small-molecule blend system through manipulating the solution state and film-forming kinetics. As a result, the crystal size of S-TR decreased and the crystal size of ITIC increased, leading to nanoscale interpenetrating networks. This optimized morphology improved the exciton dissociation efficiency and suppressed the bimolecular recombination, achieving almost double power conversion efficiency compared to the reference device. This work demonstrates that manipulation of the balanced crystal size of donor and acceptor may be a key to further boost the efficiency of AS-NFSCs.

15.
Adv Mater ; 30(51): e1805041, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30368963

RESUMO

As a prototype tool for slot-die coating, blade-coating exhibits excellent compatibility with large-area roll-to-roll coating. A ternary organic solar cell based on PBDB-T:PTB7-Th:FOIC blends is fabricated by blade-coating and exhibits a power conversion efficiency of 12.02%, which is one of the highest values for the printed organic solar cells in ambient environment. It is demonstrated that blade-coating can enhance crystallization of these three materials, but the degree of induction is different (FOIC > PBDB-T > PTB7-Th). Thus, the blade-coated PBDB-T:FOIC device presents much higher electron mobility than hole mobility due to the very high crystallinity of FOIC. Upon the addition of PTB7-Th into the blade-coated PBDB-T:FOIC blends, the crystallinity of FOIC decreases together with the corresponding electron mobility, due to the better miscibility between PTB7-Th and FOIC. The ternary strategy not only maintains the well-matched crystallinity and mobilities, but also increases the photocurrent with complementary light absorption as well as the Förster resonant energy transfer. Furthermore, small domains with homogeneously distributed nanofibers are observed in favor of the exciton dissociation and charge transport. This combination of blade-coating and ternary strategies exhibits excellent synergistic effect in optimizing morphology, showing great potential in the large-area fabrication of highly efficient organic solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA