Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266678

RESUMO

Blue thermally activated delayed fluorescent emitters are promising for the next generation of organic light-emitting diodes, yet their performance still cannot meet the requirements for commercialization. Here we establish a design rule for highly efficient and stable thermally activated delayed fluorescent emitters by introducing an auxiliary acceptor that could delocalize electron distributions, enhancing molecular stability in both the negative polaron and triplet excited state, while also accelerating triplet-to-singlet up-conversion and singlet radiative processes simultaneously. Proof-of-concept thermally activated delayed fluorescent compounds, based on a multi-carbazole-benzonitrile structure, exhibit near-unity photoluminescent quantum yields, short-lived delays and improved photoluminescent and electroluminescent stabilities. A deep-blue organic light-emitting diode using one of these molecules as a sensitizer for a multi-resonance emitter achieves a remarkable time to 95% of initial luminance of 221 h at an initial luminance of 1,000 cd m-2, a maximum external quantum efficiency of 30.8% and Commission Internationale de l'Eclairage coordinates of (0.14, 0.17).

2.
Angew Chem Int Ed Engl ; 63(7): e202318742, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38153344

RESUMO

Recently, boron (B)/nitrogen (N)-embedded polycyclic aromatic hydrocarbons (PAHs), characterized by multiple resonances (MR), have attracted significant attention owing to their remarkable features of efficient narrowband emissions with small full width at half maxima (FWHMs). However, developing ultra-narrowband pure-green emitters that comply with the Broadcast Service Television 2020 (BT2020) standard remains challenging. Precise regulation of the MR distribution regions allows simultaneously achieving the emission maximum, FWHM value, and spectral shape that satisfy the BT2020 standard. The proof-of-concept molecule TPABO-DICz exhibited ultrapure green emission with a dominant peak at 515 nm, an extremely small FWHM of 17 nm, and Commission Internationale de l'Eclairage (CIE) coordinates of (0.17, 0.76). The corresponding bottom-emitting organic light-emitting diode (OLED) exhibited a remarkably high CIEy value (0.74) and maximum external quantum efficiency (25.8 %). Notably, the top-emitting OLED achieved nearly BT2020 green color (CIE: 0.14, 0.79) and exhibited a state-of-the-art maximum current efficiency of 226.4 cd A-1 , thus fully confirming the effectiveness of the above strategy.

3.
Langmuir ; 33(41): 10868-10876, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28930637

RESUMO

Aggregation is a major problem for hydrophobic carbon nanomaterials such as carbon nanotubes (CNTs) in water because it reduces the effective particle concentration, prevents particles from entering the medium, and leads to unstable electronic device performances when a colloidal solution is used. Molecular ligands such as surfactants can help the particles to disperse, but they tend to degrade the electrical properties of CNTs. Therefore, self-dispersed particles without the need for surfactant are highly desirable. We report here, for the first time to our knowledge, that CNT particles with negatively charged hydrophobic/water interfaces can easily self-disperse themselves in water via pretreating the nanotubes with a salt solution with a low concentration of sodium hypochlorite (NaClO) and sodium bromide (NaBr). The obtained aqueous CNT suspensions exhibit stable and superior colloidal performances. A series of pH titration experiments confirmed the presence and role of the electrical double layers on the surface of the salted carbon nanotubes and of functional groups and provided an in-depth understanding of the phenomenon.

4.
ACS Appl Mater Interfaces ; 16(23): 30344-30354, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38819945

RESUMO

The primary focus of photopolymerization research is to advance highly efficient visible photoinitiating systems (PISs) as alternatives to conventional ultraviolet (UV) photoinitiators. We developed four multiresonance emitters (BIC-pCz, BNO1, BO-DICz, and TPABO-DICz) to sensitize iodonium salt (Iod) and initiate free-radical and cationic photopolymerization under visible light for the first time. The TPABO-DICz/Iod system achieved a double-bond conversion of over 70% within just 4 s of exposure to green light (520 nm), while the BNO1/Iod system achieved a double-bond conversion exceeding 50% with 10 s of exposure to red light (630 nm). The photochemical properties were studied through thermodynamic research, steady-state photolysis, and electron spin resonance. Photolithography techniques were employed to fabricate photoluminescent films and micrometer-scale patterns utilizing the blue-emitting BIC-pCz dye, showcasing the potential of photolithography in the production of photoluminescent pixels. Additionally, the BIC-pCz/Iod and TPABO-DICz/Iod systems have been employed to rapidly fabricate photoluminescent polymer patterns using a digital-light-processing 3D printer with a low-intensity light (3.2 mW cm-2). These multiresonance emitters show exceptional photosensitizing effects and can act as fluorescent dyes in photoluminescent patterns, highlighting the potential of utilizing photopolymerization for OLED applications.

5.
Adv Sci (Weinh) ; 11(26): e2309389, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38689505

RESUMO

Ir(III) carbene complexes have been explored as one of the best blue phosphors for their high performance. Herein, the authors designed and synthesized a series of blue-emitting Ir(III) phosphors (f-ct9a-c), featuring fac-coordinated cyano-imidazo[4,5-b]pyridin-2-ylidene cyclometalates. These Ir(III) complexes exhibit true-blue emission with a peak maximum spanning 448-467 nm, with high photoluminescence quantum yields of 81-88% recorded in degassed toluene. Moreover, OLED devices bearing phosphors f-ct9a and f-ct9b deliver maximum external quantum efficiencies (EQEmax) of 25.9% and 30.3%, together with Commission Internationale de L'Eclairage (CIEx,y) coordinates of (0.157, 0.225) and (0.142, 0.169), respectively. Remarkably, the f-ct9b-based device displays an incredible EQE of 29.0% at 5000 cd·m-2. The hyper-OLED device based on f-ct9b and ν-DABNA exhibits an EQEmax of 34.7% and CIEx,y coordinates of (0.122, 0.131), affirming high potentials in achieving efficient blue electroluminescence.

6.
Adv Sci (Weinh) ; 11(25): e2402196, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38650164

RESUMO

Fiber-based artificial muscles are promising for smart textiles capable of sensing, interacting, and adapting to environmental stimuli. However, the application of current artificial muscle-based textiles in wearable and engineering fields has largely remained a constraint due to the limited deformation, restrictive stimulation, and uncomfortable. Here, dual-responsive yarn muscles with high contractile actuation force are fabricated by incorporating a very small fraction (<1 wt.%) of Ti3C2Tx MXene/cellulose nanofibers (CNF) composites into self-plied and twisted wool yarns. They can lift and lower a load exceeding 3400 times their own weight when stimulated by moisture and photothermal. Furthermore, the yarn muscles are coiled homochirally or heterochirally to produce spring-like muscles, which generated over 550% elongation or 83% contraction under the photothermal stimulation. The actuation mechanism, involving photothermal/moisture-mechanical energy conversion, is clarified by a combination of experiments and finite element simulations. Specifically, MXene/CNF composites serve as both photothermal and hygroscopic agents to accelerate water evaporation under near-infrared (NIR) light and moisture absorption from ambient air. Due to their low-cost facile fabrication, large scalable dimensions, and robust strength coupled with dual responsiveness, these soft actuators are attractive for intelligent textiles and devices such as self-adaptive textiles, soft robotics, and wearable information encryption.


Assuntos
Têxteis , Animais , Nanofibras/química , Órgãos Artificiais , Lã/química , Celulose/química , Dispositivos Eletrônicos Vestíveis
7.
Kidney Med ; 6(10): 100882, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39247762

RESUMO

Rationale & Objective: The development of anuria has been linked to worse clinical outcomes in patients undergoing peritoneal dialysis (PD). Our objective was to investigate the incidence, risk factors, and associated clinical outcomes of anuria within the first year after starting PD. Study Design: Retrospective cohort study. Setting & Participants: Patients who started continuous ambulatory peritoneal dialysis at our center between 2006 and 2020 were included and followed up until January 31, 2023. Exposure: Age, sex, diabetes, temporary hemodialysis, angiotensin-converting enzyme inhibitors (ACEis) or angiotensin II receptor blockers (ARBs), diuretics, baseline urine volume, serum albumin, daily glucose exposure, peritonitis, and incremental PD. Outcomes: The primary outcome was early anuria, defined as 24-hour urine volume ≤100 mL within the first year of PD initiation. Secondary outcomes included all-cause mortality, cardiovascular disease mortality, technique failure, and peritonitis. Analytical Approach: Cox proportional hazards model. Results: A total of 2,592 patients undergoing continuous ambulatory peritoneal dialysis aged 46.7 ± 14.9 years were recruited. Among them, 58.9% were male, and 24.0% had diabetes. Within the first year of PD therapy, 159 (6.13%) patients developed anuria, with a median duration of 7.53 (interquartile range, 3.93-10.0) months. Higher baseline urine volume (hazard ratio [HR], 0.93; 95% confidence interval [CI], 0.90-0.97), higher serum albumin (HR, 0.92; 95% CI, 0.88-0.95), having diabetes before PD (HR, 0.57; 95% CI, 0.35-0.92), and prescribed incremental PD (HR, 0.27; 95% CI, 0.14-0.51) were associated with a reduced risk for early anuria, whereas a higher level of daily glucose exposure (HR, 1.01; 95% CI, 1.00-1.01) was identified as a risk factor for early anuria. Subgroup analyses showed that using ACEis or ARBs was linked to a lower risk of early anuria (HR, 0.25; 95% CI, 0.09-0.69) in diabetic patients. Treating early anuria as a time-dependent covariate, early anuria was associated with a higher risk for all-cause mortality (HR, 1.69; 95% CI, 1.23-2.32) and technique failure (HR, 1.43; 95% CI, 1.00-2.04) after adjusting for confounding factors. Limitations: Single-center and observational study. Conclusions: Among PD patients at a single center in China, early anuria was relatively uncommon but associated with an increased risk of mortality and PD technique failure. Incremental PD, higher baseline urine output and serum albumin, and lower daily glucose exposure were associated with a lower risk of early anuria. Clinical trials are needed to evaluate the optimal PD techniques to preserve residual kidney function and maximaze outcomes.


The development of anuria has been linked to worse clinical outcomes in patients undergoing peritoneal dialysis (PD). However, does the development of early anuria, which is defined as 24-hour urine volume ≤100 mL, within the first year after PD initiation influence the clinical outcomes of these patients? What are the predictors of early anuria? We conducted a single-center retrospective cohort study and found lower baseline urine volume, lower serum albumin, full-dose PD start, absence of diabetes mellitus, higher daily glucose exposure, and in patients with diabetes mellitus, non-use of angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers were associated with early anuria. Early anuria was related to a higher risk for all-cause mortality and technique failure. The results provide information for optimizing patient care and improving the prognosis of patients undergoing PD.

8.
Adv Mater ; : e2307963, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971199

RESUMO

Soft grippers are essential for precise and gentle handling of delicate, fragile, and easy-to-break objects, such as glassware, electronic components, food items, and biological samples, without causing any damage or deformation. This is especially important in industries such as healthcare, manufacturing, agriculture, food handling, and biomedical, where accuracy, safety, and preservation of the objects being handled are critical. This article reviews the use of 3D printing technologies in soft grippers, including those made of functional materials, nonfunctional materials, and those with sensors. 3D printing processes that can be used to fabricate each class of soft grippers are discussed. Available 3D printing technologies that are often used in soft grippers are primarily extrusion-based printing (fused deposition modeling and direct ink writing), jet-based printing (polymer jet), and immersion printing (stereolithography and digital light processing). The materials selected for fabricating soft grippers include thermoplastic polymers, UV-curable polymers, polymer gels, soft conductive composites, and hydrogels. It is conclude that 3D printing technologies revolutionize the way soft grippers are being fabricated, expanding their application domains and reducing the difficulties in customization, fabrication, and production.

9.
ACS Appl Mater Interfaces ; 15(48): 56181-56191, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38010839

RESUMO

Due to the flexibility and versatility of the layered crystal structure of layered double hydroxides (LDHs), they have shown great potential in various fields. However, LDH nanosheets (LDH-NSs) are easy to agglomerate, leading to the problem of accumulation, which hinders their further application. Accordingly, once LDHs are combined with solvent-free nanofluids (SFNs), the advantages of LDHs and SFNs could be combined to achieve an extraordinary performance. However, the stacked structure of traditional LDHs is not conducive to the exposure of hydroxyl functional groups, and hydroxyl sites are key to the conversion of LDHs to SFNs. Therefore, in this work, nanoflower-like LDHs (NFLs) with abundant exposed hydroxyl groups were prepared and combined with organic oligomers to achieve a solid-to-liquid transition. The formation mechanism of NFLs and the grafting mechanism of OS-PEA on their surface were identified. The prepared NFL-F3 still has good fluidity and dispersion stability in different solvents after storage for 100 days. The high-saturated grafting density on the surface of NFLs increased the steric hindrance effect of the nanoparticles, thereby improving the dispersion stability and reducing the viscosity of NFL-F3. Notably, the CO2 sorption performance of NFL-F3 is significantly improved, which is attributed to the voids between polymers, physical sorption, and good fluidity caused by high-saturation grafting on the surface of NFL-F3. Finally, by combining the sorption behavior and model fitting, it was confirmed that the physical effect was dominant in CO2 sorption by the NFL-F, which saved energy for the sorption-desorption process of its industrial application. Moreover, NFL-F3 has a good CO2/N2 separation performance and cycle stability. We envision that this general strategy will open up new insights into the construction of innovative low-viscosity LDH-based SFNs with high CO2 capacity and facilitate CO2/N2 selectivity and offer new directions for LDH utilizations.

10.
Nat Commun ; 14(1): 7132, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932285

RESUMO

The widespread adoption of renewable and sustainable elastomers in stretchable electronics has been impeded by challenges in their fabrication and lacklustre performance. Here, we realize a printed sustainable stretchable conductor with superior electrical performance by synthesizing sustainable and recyclable vegetable oil polyurethane (VegPU) elastomeric binder and developing a solution sintering method for their composites with Ag flakes. The binder impedes the propagation of cracks through its porous network, while the solution sintering reaction reduces the resistance increment upon stretching, resulting in high stretchability (350%), superior conductivity (12833 S cm-1), and low hysteresis (0.333) after 100% cyclic stretching. The sustainable conductor was used to print durable and stretchable impedance sensors for non-obstructive detection of fruit maturity in food sensing technology. The combination of sustainable materials and strategies for realizing high-performance stretchable conductors provides a roadmap for the development of sustainable stretchable electronics.

11.
Artigo em Inglês | MEDLINE | ID: mdl-36882929

RESUMO

Solar energy, as renewable energy, has paid extensive attention for solar thermal utilization due to its unique characteristics such as rich resources, easy access, clean, and pollution-free. Among them, solar thermal utilization is the most extensive one. Nanofluid-based direct absorption solar collectors (DASCs), as an important alternative method, can further improve the solar thermal efficiency. Notably, the stability of photothermal conversion materials and flowing media is critical to the performance of DASC. Herein, we first proposed novel Ti3C2Tx-IL-based nanofluids by the electrostatic interaction, which consists of functional Ti3C2Tx modified with PDA and PEI as a photothermal conversion material and ionic liquid with low viscosity as the flow medium. Ti3C2Tx-IL-based nanofluids exhibit excellent cycle stability, wide spectrum, and efficient solar energy absorption performance. Besides, Ti3C2Tx-IL-based nanofluids maintain liquid state in a range of -80 to 200 °C, and its viscosity was as low as 0.3 Pa·s at 0 °C. Moreover, the equilibrium temperature of Ti3C2Tx@PDA-IL at a very low mass fraction of 0.04% reached 73.9 °C under 1 Sun, indicating an excellent photothermal conversion performance. Furthermore, the application of nanofluids in photosensitive inks has been preliminarily explored, which is expected to play a role in the fields of injectable biomedical materials and photo/electric double-generation thermal and hydrophobic anti ice coatings.

12.
ACS Appl Mater Interfaces ; 14(43): 48976-48985, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36278937

RESUMO

Graphene quantum dots usually suffer from serious fluorescence quenching in aggregates and the solid state due to easy agglomeration and aggregation-induced quenching, which seriously restrict their practical applications. An ingenious strategy to kill three birds with one stone, the ultraviolet (UV) photolithography technique, was studied, and blue-emitting reduced graphene oxide quantum dot (rGOQD)-based light emitting diodes (LEDs) with efficient solid state emission were first fabricated using UV photolithography. First, rGOQDs were prepared by the in situ photoreduction of GOQDs by using the photoinitiator phenyl bis(2,4,6-trimethylbenzoyl)phosphine oxide with 395 nm UV LED exposure. Furthermore, rGOQD/photoresist patterns were prepared under the same conditions. Meanwhile, the in situ photoreduction of GO in the aforementioned photoresist to rGO was realized by UV photolithography to improve the conductivity of the rGOQD/photoresist films. Additionally, the in situ photoreduction of GOQDs in different surroundings was studied, with the results showing that GOQDs are more easily photoreduced in ionic liquids and that the photoluminescence spectrum obtained for rGOQDs exhibits a 70 nm blueshift with a narrow full-width at half-maximum compared to GOQDs.

13.
Polymers (Basel) ; 14(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365582

RESUMO

High-performance photoinitiators (PIs) are essential for ultraviolet-visible (UV-Vis) light emitting diode (LED) photopolymerization. In this study, a series of coumarin ketoxime esters (COXEs) with electron-donating substituents (tert-butyl, methoxy, dimethylamino and methylthio) were synthesized to study the structure/reactivity/efficiency relationships for substituents for the photoinitiation performance of PIs. The introduction of heteroatom electron-donating substituents leads to a redshift in the COXE absorption of more than 60 nm, which matches the UV-Vis LED emission spectra. The PIs also show acceptable thermal stability via differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The results from real-time Fourier transform infrared (RT-FTIR) measurements indicate that COXEs show an excellent photoinitiation efficiency for free radical polymerization under UV-Vis LED irradiation (365-450 nm); in particular, the conversion efficiency for tri-(propylene glycol) diacrylate (TPGDA) polymerization initiated by COXE-O and COXE-S (4.8 × 10-5 mol·g-1) in 3 s can reach more than 85% under UV-LED irradiation (365, 385 nm). Moreover, the photosensitization of COXEs in the iodonium hexafluorophosphate (Iod-PF6) and hexaarylbiimidazole/N-phenylglycine (BCIM/NPG) systems was investigated via RT-FTIR. As a coinitiator, COXEs show excellent performance in dry film photoresist (DFR) photolithography. This excellent performance of COXEs demonstrates great potential for UV-curing and photoresist applications, providing a new idea for the design of PIs.

14.
ACS Omega ; 7(25): 21664-21674, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35785329

RESUMO

Despite many important industrial applications, epoxy resin (EP) suffers from high flammability and toxicity emission, extremely hampering their applications. To circumvent the problem, core-shell structured ZIF67@ZIF8 is successfully synthesized and further functionalized with phytic acid (PA) to obtain PA-ZIF67@ZIF8 hybrids. Then, it is used as an efficient flame retardant to reduce the fire risk of EP. The fire test results show a significant reduction in heat and smoke production. Compared with EP, incorporating 5.0 wt % PA-ZIF67@ZIF8 into EP, the peak heat release rate, total heat release, and peak carbon monoxide production are dramatically reduced by 42.2, 33.0, and 41.5%, respectively. Moreover, the EP/PA-ZIF67@ZIF8 composites achieve the UL-94 V-0 rating and the limiting oxygen index increases by 29.3%. These superior fire safety properties are mainly attributed to the excellent dispersion and the catalytic effect of metal oxide and phosphorus-containing compounds. This work provides an efficient strategy for preparing a promising ZIF-based flame retardant for enhancing flame retardancy and smoke toxicity suppression of EP.

15.
ACS Appl Mater Interfaces ; 13(2): 2600-2609, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33403847

RESUMO

Porous liquids (PLs), an emerging kind of liquid materials with permanent porosity, have attracted increasing attention in gas capture. However, directly turning metal-organic frameworks (MOFs) into PLs via a covalent linkage surface engineering strategy has not been reported. Additionally, challenges including reducing the cost and simplifying the preparation process are daunting. Herein, we proposed a general method to transform Universitetet i Oslo (UiO)-66-OH MOFs into PLs by surface engineering with organosilane (OS) and oligomer species via covalent bonding linkage. The oligomer species endow UiO-66-OH with superior fluidity at room temperature. Meanwhile, the resulting PLs showed great potential in both CO2 adsorption and CO2/N2 selective separation. The residual porosity of PLs was verified by diverse characterizations and molecular simulations. Besides, CO2 selective capture sites were determined by grand canonical Monte Carlo (GCMC) simulation. Furthermore, the universality of the covalent linkage surface engineering strategy was confirmed using different classes of oligomer species and another MOF (ZIF-8-bearing amino groups). Notably, this strategy can be extended to construct other PLs by taking advantages of the rich library of oligomer species, thus making PLs promising candidates for further applications in energy and environment-related fields, such as gas capture, separation, and catalysis.

16.
ACS Appl Mater Interfaces ; 10(39): 33507-33515, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30211536

RESUMO

Highly stretchable strain sensors are key elements of new applications in wearable electronics and soft robotics. Most of the available technologies only measure positive strain (stretching), and cannot measure negative strains (compression). We propose here a stretchable technology that enables the measurement of both negative and positive strains with high sensitivity. A carbon nanotube paper is pre-cracked to introduce a well-controlled network of open cracks as the sensing element; then, the pre-cracked paper is sandwiched by a thermoplastic elastomer. The resulting sensor is also pre-stretched and subjected to thermal annealing, which removes any residual stress so that the pre-stretched configuration remains stable. This process results in a stretchable structure with a network of open cracks that is sensitive to both negative and positive strains. We demonstrate that such sensors can measure negative strains up to -13% with high sensitivity and robust stretchability.

17.
Nanoscale ; 9(30): 10897-10905, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28731088

RESUMO

There is an increasing demand for strain sensors with high sensitivity and high stretchability for new applications such as robotics or wearable electronics. However, for the available technologies, the sensitivity of the sensors varies widely. These sensors are also highly nonlinear, making reliable measurement challenging. Here we introduce a new family of sensors composed of a laser-engraved carbon nanotube paper embedded in an elastomer. A roll-to-roll pressing of these sensors activates a pre-defined fragmentation process, which results in a well-controlled, fragmented microstructure. Such sensors are reproducible and durable and can attain ultrahigh sensitivity and high stretchability (with a gauge factor of over 4.2 × 104 at 150% strain). Moreover, they can attain high linearity from 0% to 15% and from 22% to 150% strain. They are good candidates for stretchable electronic applications that require high sensitivity and linearity at large strains.

18.
Sci Rep ; 7(1): 4317, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28659624

RESUMO

Chemical sensors detect a variety of chemicals across numerous fields, such as automobile, aerospace, safety, indoor air quality, environmental control, food, industrial production and medicine. We successfully assemble an alcohol-sensing device comprising a thin-film sensor made of graphene nanosheets (GNs) and bacterial cellulose nanofibers (BCNs). We show that the GN/BCN sensor has a high selectivity to ethanol by distinguishing liquid-phase or vapor-phase ethanol (C2H6O) from water (H2O) intelligently with accurate transformation into electrical signals in devices. The BCN component of the film amplifies the ethanol sensitivity of the film, whereby the GN/BCN sensor has 12400% sensitivity for vapor-phase ethanol compared to the pure GN sensor, which has only 21% sensitivity. Finally, GN/BCN sensors demonstrate fast response/recovery times and a wide range of alcohol detection (10-100%). The superior sensing ability of GN/BCN compared to GNs alone is due to the improved wettability of BCNs and the ionization of liquids. We prove a facile, green, low-cost route for the assembly of ethanol-sensing devices with potential for vast application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA