Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Phys Chem A ; 127(20): 4511-4525, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37191977

RESUMO

We explore the quantum dynamics of nuclear spin relaxation in cold collisions of 1Σ+ molecules with structureless atoms in an external magnetic field. To this end, we develop a rigorous coupled-channel methodology, which accounts for rotational and nuclear spin degrees of freedom of 1Σ+ molecules and their interaction with an external magnetic field as well as anisotropic atom-molecule interactions. We apply the methodology to study the collisional relaxation of the nuclear spin sublevels of 13CO molecules immersed in a cold buffer gas of 4He atoms. We find that nuclear spin relaxation in the ground rotational manifold (N = 0) of 13CO occurs extremely slowly due to the absence of direct couplings between the nuclear spin sublevels. The rates of collisional transitions between the rotationally excited (N = 1) nuclear spin states of 13CO are generally much higher due to the direct nuclear spin-rotation coupling between the states. These transitions obey selection rules, which depend on the values of space-fixed projections of rotational and nuclear spin angular momenta (MN and MI) for the initial and final molecular states. For some initial states, we also observe a strong magnetic field dependence, which can be understood by using the first Born approximation. We use our calculated nuclear spin relaxation rates to investigate the thermalization of a single nuclear spin state of 13CO(N = 0) immersed in a cold buffer gas of 4He. The calculated nuclear spin relaxation times (T1 ≃ 1 s at T = 1 K at a He density of 10-14 cm-3) display a steep temperature dependence decreasing rapidly at elevated temperatures due to the increased population of rotationally excited states, which undergo nuclear spin relaxation at a much faster rate. Thus, long relaxation times of N = 0 nuclear spin states in cold collisions with buffer gas atoms can be maintained only at sufficiently low temperatures (kBT ≪ 2Be), where Be is the rotational constant.

2.
Plant Cell Rep ; 41(10): 1955-1973, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36066602

RESUMO

KEY MESSAGE: Abscisic acid induced the expression of AsKIN during the recovery period of garlic cryopreservation. AsKIN was identified as a gene involved in cold and osmotic stress resistance. Cryopreservation has been proven to be effective in removing viruses from garlic. However, oxidative damage in cryopreservation has a significant impact on the survival after preservation. Abscisic acid (ABA) has been shown to reduce oxidative stress and promote the survival after cryopreservation. However, it is not clear which genes play important roles in this process. In this study, we added ABA to the dehydration step and analyzed the transcriptomic divergences between the ABA-treated group and the control group in three cryogenic steps (dehydration, unloading and recovery). By short time-series expression miner (STEM) analysis and weighted gene co-expression network analysis (WGCNA), the recovery step was identified as the period of significant changes in gene expression levels in cryopreservation. The addition of ABA promoted the upregulated expression of microtubule-related genes in the recovery step. We further identified AsKIN as a hub gene in the recovery step and verified its function. The results showed that overexpression of AsKIN enhanced the tolerance of Arabidopsis to oxidative stress in cryopreservation, influenced the expression of genes in response to cold and osmotic stress and promoted plant growth after stress. The AsKIN gene is likely to be involved in the plant response to cold stress and osmotic stress. These results reveal the molecular mechanisms of ABA in cryopreservation and elucidate the potential biological functions of the kinesin-14 subfamily.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Alho , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Antioxidantes/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Criopreservação , Desidratação , Regulação da Expressão Gênica de Plantas , Cinesinas
3.
Cryobiology ; 107: 64-73, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35568161

RESUMO

Cryopreservation is known be an effective method for virus elimination in garlic. However, oxidative damage during the cryopreservation seriously affects the survival of garlic after cryopreservation. Ascorbic acid (AsA) can reduce oxidative damage and improve regrowth following cryopreservation, and its effect may be influenced by the step during which it is added. In this study, AsA was added at the osmoprotection (O) and dehydration (DE) steps of cryopreservation. By observing the dynamic changes in cell viability and reactive oxygen species (ROS) components with different AsA treatments, AsA has been linked to the reduced accumulation of ROS in the shoot tips. Increased gene expression levels of antioxidant enzymes also explained the ROS scavenging effect of AsA. The correlation analysis between cell viability, ROS, membrane lipid peroxidation-related indicators and antioxidant-related indicators showed that membrane lipid peroxidation caused by excess ROS was the main factor affecting cell viability. Ascorbic acid added during dehydration minimized the accumulation of ROS from dehydration to dilution and alleviated the oxidative damage during cryopreservation. Thus, the survival and regrowth of the garlic was significantly improved after cryopreservation. Dehydration was found to be the suitable step for the addition of AsA during garlic cryopreservation. We further evaluated the virus elimination effect under optimal AsA treatment. However, there was no significant difference in virus content in regenerated plants when compared with the control.


Assuntos
Antioxidantes , Alho , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacologia , Criopreservação/métodos , Desidratação/metabolismo , Alho/metabolismo , Brotos de Planta , Espécies Reativas de Oxigênio/metabolismo , Carga Viral
4.
J Mater Sci Mater Med ; 30(4): 41, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30919092

RESUMO

For cartilage tissue repairing, it remains a key challenge to design implant materials with antibacterial activity, proper degradation rate and mechanical property. In this research, antibacterial nanodiamonds (QND, QND-Ag) modified acrylate-terminated polyurethanes (APU) were prepared. By the addition of nanocomposites, the crystallinity of modified APU obviously increased, which indicates a strong interaction between NDs and APU. Tensile and compression tests were carried out to evaluate the improved mechanical properties. Compared with APU, APU(10%PEG)/QND-Ag possessed the increased modulus and strength, a nevertheless slight decrease in elongation at break. Due to the dual actions of contact-killing of cationic polymers and release-killing of the Ag NPs, QND-Ag-containing polyurethane showed excellent antibacterial activity against Staphylococcus aureus. Moreover, APU containing polyethylene glycol showed a significant increase in degradability rates. Consequently, owing to the dual effect of crystallinity and hydrophilicity, our modified APU exhibited the proper degradation rate adaptable to the healing rate of cartilage tissue. Furthermore, the CCK-8 results demonstrated that synthesized samples were low toxic. Therefore, APU(10%PEG)/QND-Ag holds great promise for the application of cartilage tissue repairing.


Assuntos
Antibacterianos , Cartilagem , Regeneração Tecidual Guiada , Nanodiamantes/química , Poliuretanos/química , Prata/administração & dosagem , Alicerces Teciduais/química , Implantes Absorvíveis , Animais , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Fenômenos Biomecânicos , Cartilagem/citologia , Cartilagem/efeitos dos fármacos , Cartilagem/fisiologia , Células Cultivadas , Preparações de Ação Retardada , Portadores de Fármacos/química , Regeneração Tecidual Guiada/instrumentação , Regeneração Tecidual Guiada/métodos , Teste de Materiais , Camundongos , Testes de Sensibilidade Microbiana , Poliaminas , Polieletrólitos , Regeneração/efeitos dos fármacos , Prata/farmacocinética , Staphylococcus aureus , Estresse Mecânico , Cicatrização/efeitos dos fármacos
5.
J Environ Sci (China) ; 82: 93-102, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31133273

RESUMO

Nanoscale zero-valent iron (nZVI) particles supported on a porous, semi-interpenetrating (semi-IPN), temperature-sensitive composite hydrogel (PNIPAm-PHEMA). nZVI@PNIPAm-PHEMA, was successfully synthesized and characterized by FT-IR, SEM, EDS, XRD and the weighing method. The loading of nZVI was 0.1548 ±â€¯0.0015 g/g and the particle size was 30-100 nm. NZVI was uniformly dispersed on the pore walls inside the PNIPAm-PHEMA. Because of the well-dispersed nZVI, the highly porous structure, and the synergistic effect of PNIPAm-PHEMA, nZVI@PNIPAm-PHEMA showed excellent reductive activity and wide pH applicability. 95% of 4-NP in 100 mL of 400 mg/L 4-NP solution with initial pH 3.0-9.0 could be completely reduced into 4-AP by about 0.0548 g of fresh supported nZVI at 18-25 °C under stirring (110 r/min) within 45 min reaction time. A greater than 99% 4-NP degradation ratio was obtained when the initial pH was 5.0-9.0. The reduction of 4-NP by nZVI@PNIPAm-PHEMA was in agreement with the pseudo-first-order kinetics model with Kobs values of 0.0885-0.101 min-1. NZVI@PNIPAm-PHEMA was able to be recycled, and about 85% degradation ratio of 4-NP was obtained after its sixth reuse cycle. According to the temperature sensitivity of PNIPAm-PHEMA, nZVI@PNIPAm-PHEMA exhibited very good storage stability, and about 88.9% degradation ratio of 4-NP was obtained after its storage for 30 days. The hybrid reducer was highly efficient for the reduction of 2-NP, 3-NP, 2-chloro-4-nitrophenol and 2-chloro-4-nitrophenol. Our results suggest that PNIPAm-PHEMA could be a good potential carrier, with nZVI@PNIPAm-PHEMA having potential value in the application of reductive degradation of nitrophenol pollutants.


Assuntos
Nitrofenóis/química , Poluentes Químicos da Água/química , Adsorção , Hidrogéis/química , Ferro/química , Oxirredução , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
6.
J Nanosci Nanotechnol ; 18(5): 3126-3133, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442811

RESUMO

Novel bactericidal materials, polycation-based N-halamine functionalized nanodiamonds (PCN-NDs), were fabricated by coating of nanodiamonds (NDs) with quaternarized N-halamine polymers via a facile approach. Chemical modification of the particles was confirmed by FTIR, XPS and TGA. The particle diameters and dispersity of the functionalized NDs were investigated by TEM and DLS measurements. It was found that ND tight core aggregates could be broken into tiny nanoparticles with 40-50 nm through functionalization procedure, which resulted in stable colloidal dispersion solution over one month. The antibacterial tests showed that the PCN-NDs exhibited enhanced antibacterial activity against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) compared with their bulk counterparts. The minimum inhibitory concentration values of the as-prepared PCN-NDs are 62.5 µg/mL for both E. coli and S. aureus, even PCN-NDs eliminated nearly 100% of E. coil and S. aureus (107-108 CFU/mg nanoparticles) within 15 min. Furthermore, the as-prepared antimicrobial PCN-NDs exhibited good storage stability and regenerability.


Assuntos
Antibacterianos/farmacologia , Nanodiamantes , Poliaminas/farmacologia , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Polieletrólitos , Staphylococcus aureus/efeitos dos fármacos
7.
J Mater Sci Mater Med ; 29(11): 162, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30357538

RESUMO

There is an increasing clinical need to design dental restorative materials that combine excellent mechanical property and anti-biofilm activity. In the current study, photocurable polycation functionalized nanodiamond (QND) was synthesized and proposed as novel filler for dental resins. By reason of increased repulsive force between nanoparticles and enhanced compatibility with resin matrix, QND dispersed uniformly in reinforced resins, which would help to transfer stress and deformation from the matrix to fillers more efficiently, resulting in a significant improvement in mechanical properties. Notably, the Vickers's hardness, flexural strength and flexural modulus of resins containing 1.0 wt% QND were 44.5, 36.1 and 41.3% higher than that of control, respectively. The antibacterial activity against Streptococcus mutans (S. mutans) showed that QND-incorporated resins produced anti-adhesive property due to their hydrophilic surfaces and could suppress bacterial growth as a result of the contact-killing effect of embedded nanocomposites. As the synergistic effect of anti-adhesive and bactericidal performance, resins loading 1.0~1.5 wt% QNDs displayed excellent anti-biofilm activity. Meanwhile, the results of macrophage cytotoxicity showed that the proliferation of RAW 264.7 cells remained 84.3%, even at a concentration of 1.0 wt% QNDs after 7-day incubation. Therefore, the QND-containing dental resin with the combination of high mechanical property, bacteria-repellent capability and antibacterial performance holds great potential as a restorative material based on this scheme.


Assuntos
Biofilmes/efeitos dos fármacos , Materiais Dentários , Nanodiamantes/química , Polímeros/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Mecânica , Camundongos , Células RAW 264.7 , Streptococcus mutans/efeitos dos fármacos
8.
J Phys Chem A ; 121(10): 2187-2193, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28230993

RESUMO

The accurate knowledge of electronic properties is important for creating and manufacturing ultracold molecules. We report here the ab initio quantum chemistry calculations on the properties of alkali-metal-ytterbium AM-Yb (AM = Li, Na, K, Rb, Cs) and alkaline-earth-metal-ytterbium AEM-Yb (AEM = Be, Mg, Ca, Sr, Ba) molecules for their electronic ground state. The potential energy curves (PECs) and permanent dipole moments (PDMs) are calculated on the basis of the multireference configuration interaction (MRCI) level of theory, where the core-valence correlations and scalar relativistic effects are included. The related spectroscopic constants are also determined. The results demonstrate that the dissociation energies and PDMs of AEM-Yb are smaller than those of AM-Yb molecules, and an interesting trend of the dissociation energy has been observed. This work provides favorable information for the experimental study of forming ultracold molecules via photoassociation technique.

9.
J Mater Sci Mater Med ; 28(7): 103, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28534286

RESUMO

Research on the incorporation of cutting-edge nano-antibacterial agent for designing dental materials with potent and long-lasting antibacterial property is demanding and provoking work. In this study, a novel resin-based dental material containing photocurable core-shell AgBr/cationic polymer nanocomposite (AgBr/BHPVP) was designed and developed. The shell of polymerizable cationic polymer not only provided non-releasing antibacterial capability for dental resins, but also had the potential to polymerize with other methacrylate monomers and prevented nanoparticles from aggregating in the resin matrix. As a result, incorporation of AgBr/BHPVP nanocomposites did not adversely affect the flexural strength and modulus but greatly increased the Vicker's hardness of resin disks. By continuing to release Ag+ ions without the impact of anaerobic environment, resins containing AgBr/BHPVP nanoparticles are particularly suitable to combat anaerobic cariogenic bacteria. By reason of the combined bactericidal effect of the contact-killing cationic polymers and the releasing-killing Ag+ ions, AgBr/BHPVP-containing resin disks had potent bactericidal activity against S. mutans. The long-lasting antibacterial activity was also achieved through the sustained release of Ag+ ions due to the core-shell structure of the nanocomposites. The results of macrophage cytotoxicity showed that the cell viability of dental resins loading less than 1.0 wt% AgBr/BHPVP was close to that of neat resins. The AgBr/BHPVP-containing dental resin with dual bactericidal capability and long term antimicrobial effect is a promising material aimed at preventing second caries and prolonging the longevity of resin composite restorations.


Assuntos
Brometos/administração & dosagem , Preparações de Ação Retardada/administração & dosagem , Cura Luminosa de Adesivos Dentários/métodos , Nanocápsulas/administração & dosagem , Nanocompostos/administração & dosagem , Resinas Sintéticas/síntese química , Compostos de Prata/administração & dosagem , Streptococcus mutans/efeitos dos fármacos , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/efeitos da radiação , Brometos/química , Brometos/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/efeitos da radiação , Difusão , Combinação de Medicamentos , Dureza/efeitos dos fármacos , Luz , Nanocápsulas/química , Nanocápsulas/efeitos da radiação , Nanocápsulas/ultraestrutura , Nanocompostos/química , Nanocompostos/efeitos da radiação , Poliaminas/química , Poliaminas/efeitos da radiação , Polieletrólitos , Resinas Sintéticas/administração & dosagem , Resinas Sintéticas/efeitos da radiação , Compostos de Prata/química , Compostos de Prata/efeitos da radiação
10.
Phys Chem Chem Phys ; 18(37): 26177-26183, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27711644

RESUMO

The effect of Mg doping on the growth behavior and the electronic properties of aluminum clusters has been investigated theoretically using the CALYPSO (Crystal structure AnaLYsis by Particle Swarm Optimization) method in combination with density functional theory calculations. Compared to pure aluminum clusters, the structure of Mg-doped clusters shows the charming transformation with increasing atomic number. The photoelectron spectra (PES) of the global minima of anionic Aln and AlnMg (n = 3-20) clusters have been calculated based on the time-dependent density functional theory (TD-DFT) method. The reliability of our theoretical methodology is easily corroborated by the good agreement between the experimental PES and the simulated spectra. Our findings bring forth an ionic bonding with enhanced stability for the Al6Mg cluster, paired with a surprisingly large HOMO-LUMO gap, as would be expected from the magic number of 20 valence electrons.

11.
J Phys Chem A ; 120(40): 7947-7954, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27607143

RESUMO

The structures and electronic properties of low-energy neutral and anionic Mgn (n = 3-20) clusters have been studied by utilizing a widely adopted CALYPSO structure searching method coupled with density functional theory calculations. A large number of low-energy isomers are optimized at the B3PW91 functional with the 6-311+G(d) basis set. The optimized geometries clearly indicate that a structural transition from hollow three-dimensional configurations to filled-cage-like structures occurs at n = 16 for both neutral and anionic clusters. Based on the anionic ground state structures, photoelectron spectra are simulated using time-dependent density functional theory (TD-DFT) and compared with experimental results. The good agreement validates that the current ground state structures, obtained from the symmetry-unconstrained searches, are true global minima. A detailed chemical bonding analysis distinctly indicates that the Mg17 cluster is the first neutral locally π-aromatic homonuclear all-metal cluster, which perfectly satisfies Hückel's well-known 4N + 2 rule.

12.
J Nanosci Nanotechnol ; 16(6): 5562-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27427597

RESUMO

Nanostructured biopolymer hydrogels have great potential in the field of drug delivery and regenerative medicine. In this work, a nano-fibrous (NF) biopolymer hydrogel was developed for cell growth factors (GFs) delivery and in vitro osteogenesis. The nano-fibrous hydrogel was produced via biological conjugation of streptavidin functionalized hyaluronic acid (HA-Streptavidin) and biotin terminated star-shaped poly(ethylene glycol) (PEG-Biotin). In the present work, in vitro gelation, mechanical properties, degradation and equilibrium swelling of the NF hydrogel were examined. The potential application of this NF gel scaffold in bone tissue engineering was confirmed by encapsulation behavior of osteoblasts. Osteoblasts seeded directly in NF gel scaffold containing cell growth factor, e.g. bone morphogenetic protein 2 (BMP-2), was to mimic the in vivo microenvironment in which cells interface biomaterials and interact with BMP-2. In combination with BMP-2, the NF hydrogel exhibited beneficial effects on osteoblast activity and differentiation, which suggested a promising future for local treatment of pathologies involving bone loss.


Assuntos
Biopolímeros/química , Biopolímeros/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Nanofibras/química , Osteogênese/efeitos dos fármacos , Biotina/química , Linhagem Celular , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Humanos , Ácido Hialurônico/química , Peptídeos e Proteínas de Sinalização Intercelular/química , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Polietilenoglicóis/química , Reologia , Estreptavidina/química , Engenharia Tecidual
13.
Digit Health ; 10: 20552076241257456, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38798883

RESUMO

Background and Objective: Osteoporotic fractures significantly impact individuals's quality of life and exert substantial pressure on the social pension system. This study aims to develop prediction models for osteoporotic fracture and uncover potential risk factors based on Electronic Health Records (EHR). Methods: Data of patients with osteoporosis were extracted from the EHR of Xinhua Hospital (July 2012-October 2017). Demographic and clinical features were used to develop prediction models based on 12 independent machine learning (ML) algorithms and 3 hybrid ML models. To facilitate a nuanced interpretation of the results, a comprehensive importance score was conceived, incorporating various perspectives to effectively discern and mine critical features from the data. Results: A total of 8530 patients with osteoporosis were included for analysis, of which 1090 cases (12.8%) were fracture patients. The hybrid model that synergistically combines the Support Vector Machine (SVM) and XGBoost algorithms demonstrated the best predictive performance in terms of accuracy and precision (above 90%) among all benchmark models. Blood Calcium, Alkaline phosphatase (ALP), C-reactive Protein (CRP), Apolipoprotein A/B ratio and High-density lipoprotein cholesterol (HDL-C) were statistically found to be associated with osteoporotic fracture. Conclusions: The hybrid machine learning model can be a reliable tool for predicting the risk of fracture in patients with osteoporosis. It is expected to assist clinicians in identifying high-risk fracture patients and implementing early interventions.

14.
Int J Nanomedicine ; 19: 5879-5893, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895145

RESUMO

Introduction: Persistent endodontic infections (PEIs) mediated by bacterial biofilm mainly cause persistent periapical inflammation, resulting in recurrent periapical abscesses and progressive bone destruction. However, conventional root canal disinfectants are highly damaging to the tooth and periodontal tissue and ineffective in treating persistent root canal infections. Antimicrobial materials that are biocompatible with apical tissues and can eliminate PEIs-associated bacteria are urgently needed. Methods: Here, ε-poly (L-lysine) derived carbon quantum dots (PL-CQDs) are fabricated using pyrolysis to remove PEIs-associated bacterial biofilms. Results: Due to their ultra-small size, high positive charge, and active reactive oxygen species (ROS) generation capacity, PL-CQDs exhibit highly effective antibacterial activity against Enterococcus faecalis (E. faecalis), which is greatly dependent on PL-CQDs concentrations. 100 µg/mL PL-CQDs could kill E. faecalis in 5 min. Importantly, PL-CQDs effectively achieved a reduction of biofilms in the isolated teeth model, disrupting the dense structure of biofilms. PL-CQDs have acceptable cytocompatibility and hemocompatibility in vitro and good biosafety in vivo. Discussion: Thus, PL-CQDs provide a new strategy for treating E. faecalis-associated PEIs.


Assuntos
Biofilmes , Carbono , Enterococcus faecalis , Infecções por Bactérias Gram-Positivas , Polilisina , Pontos Quânticos , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/fisiologia , Pontos Quânticos/química , Biofilmes/efeitos dos fármacos , Polilisina/química , Polilisina/farmacologia , Carbono/química , Carbono/farmacologia , Animais , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Espécies Reativas de Oxigênio/metabolismo , Camundongos
15.
Neural Regen Res ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38934395

RESUMO

ABSTRACT: Spinal muscular atrophy is a devastating motor neuron disease characterized by severe cases of fatal muscle weakness. It is one of the most common genetic causes of mortality among infants aged less than 2 years. Biomarker research is currently receiving more attention, and new candidate biomarkers are constantly being discovered. This review initially discusses the evaluation methods commonly used in clinical practice while briefly outlining their respective pros and cons. We also describe recent advancements in research and the clinical significance of molecular biomarkers for spinal muscular atrophy, which are classified as either specific or non-specific biomarkers. This review provides new insights into the pathogenesis of spinal muscular atrophy, the mechanism of biomarkers in response to drug-modified therapies, the selection of biomarker candidates, and would promote the development of future research. Furthermore, the successful utilization of biomarkers may facilitate the implementation of gene-targeting treatments for patients with spinal muscular atrophy.

16.
ACS Appl Mater Interfaces ; 16(6): 7790-7805, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38301153

RESUMO

Adhesive hydrogels, playing an essential role in stretchable electronics, soft robotics, tissue engineering, and so forth, upon functioning often need to adhere to various substrates in wet conditions and simultaneously exhibit antibacterial/antioxidant properties while possessing the intrinsic stretchability and elasticity of the hydrogel network intact. Therefore, simple approaches to conveniently access adhesive hydrogels with multifunctional surfaces are being pursued. Herein, a facile strategy has been proposed to construct multifunctional adhesive hydrogels via surface engineering of a multifunctional carbon dot (CD)-decorated polymeric thin layer by dynamic bond exchange. By this strategy, a double cross-linked network hydrogel of polyacrylamide (PAM) and oxidized dextran (ODA) was engineered with a unique dense layer over the Schiff base hydrogel matrix by aqueous solution immersion of PA-120, versatile CDs derived from tannic acid (TA) and ε-polylysine (PL). Without any additional agents, the PA-120 CDs with residual polyphenolic/catechol and amine moieties were incorporated into the surface structure of the hydrogel network by the combined action of the Schiff base and hydrogen bonds to form a dense surface layer that can exhibit high wet adhesive performance via the amine-polyphenol/catechol pair. The armor-like dense architecture also endowed hydrogels with considerably enhanced tensile/compression properties and excellent antioxidant/antibacterial abilities. Besides, the single-sided modified Janus hydrogel and completely surface-modified hydrogel can be flexibly developed through this approach. This strategy will provide new insights into the preparation and application of surface-modified hydrogels featuring multiple functions and tunable interfacial properties.

17.
J Phys Chem Lett ; 14(27): 6224-6233, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37387513

RESUMO

We propose a hybrid quantum-classical algorithm for solving the time-independent Schrödinger equation for atomic and molecular collisions. The algorithm is based on the S-matrix version of the Kohn variational principle, which computes the fundamental scattering S-matrix by inverting the Hamiltonian matrix expressed in the basis of square-integrable functions. The computational bottleneck of the classical algorithm─symmetric matrix inversion─is addressed here using the variational quantum linear solver (VQLS), a recently developed noisy intermediate-scale quantum (NISQ) algorithm for solving systems of linear equations. We apply our algorithm to single- and multichannel quantum scattering problems, obtaining accurate vibrational relaxation probabilities in collinear atom-molecule collisions. We also show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules. Our results demonstrate that it is possible to calculate scattering cross sections and rates for complex molecular collisions on NISQ quantum processors, opening up the possibility of scalable digital quantum computation of gas-phase bimolecular collisions and reactions of relevance to astrochemistry and ultracold chemistry.

18.
J Mater Chem B ; 11(4): 734-754, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36602120

RESUMO

Due to the increasing bacterial resistance to conventional antibiotics, developing safe and effective approaches to combat infections caused by bacteria and biofilms has become an urgent clinical problem. Recently, carbon dots (CDs) have received great attention as a promising alternative to conventional antimicrobial agents due to their excellent antimicrobial efficacy and biocompatibility. Although CDs have been widely used in the field of antibacterial applications, their antibacterial and antibiofilm mechanisms have not been systematically discussed. This review provides a systematic overview on the complicated mechanisms of antibacterial and antibiofilm CDs based on recent development.


Assuntos
Anti-Infecciosos , Carbono , Antibacterianos/farmacologia , Bactérias , Biofilmes , Carbono/farmacologia
19.
Environ Sci Pollut Res Int ; 30(58): 122755-122773, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37978121

RESUMO

This paper focuses on enhancing the performance of electrocatalytic CO2 reduction reaction (CO2RR) by improving the dispersion of cobalt phthalocyanine (CoPc), especially for the methanol formation with multi-walled carbon nanotubes (CNTs) as a support. The promising CNTs-supported CoPc hybrid was prepared based on ball milling technique, and the surface morphology was characterized by means of those methods such as scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectra (XPS). Then, the synergistic effect of CNTs and ball milling on CO2RR performance was analyzed by those methods of cyclic voltammetry (CV), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), gas chromatography (GC), and proton nuclear magnetic resonance spectroscopy (1HNMR). Subsequently, the reduction mechanism of CO2 on ball-milled CoPc/CNTs was revealed based on the DFT calculations. The results showed that the electrocatalyst CoPc/CNTs hybrid prepared with sonication exhibited a conversion efficiency of CO2 above 60% at -1.0 V vs. RHE, accompanied by the Faradaic efficiencies of nearly 50% for CO and 10% for methanol, respectively. The addition of CNTs as the support improved the utilization efficiency of CoPc and reduced the transfer resistance of species and electrons. Then the ball-milling method further improved the dispersion of CoPc on CNTs, which resulted in the fact that the methanol efficiency was raised by 6% and partial current density was increased by nearly 433%. The better dispersion of CoPc on CNTs adjusted the reduction pathway of CO2 and resulted in the enhancement of methanol selectivity and catalytic activity of CO2. The probable pathway for methanol production was proposed as CO2 → *CO2- → *COOH → *CO → *CHO → *CH2O → *OCH3 → CH3OH. This suggests the significance of the ball-milling method during the preparation of better supported catalysts for CO2RR towards those high-valued products.


Assuntos
Dióxido de Carbono , Nanotubos de Carbono , Metanol , Espectroscopia de Infravermelho com Transformada de Fourier
20.
ACS Biomater Sci Eng ; 9(10): 5548-5566, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37735749

RESUMO

The discovery of chiral carbon dots (Ch-CDs) has opened up an exciting new research direction in the field of carbon dots. It not only retains the chirality of the precursor and exhibits highly symmetric chiral optical properties but also has properties such as chemical stability, antibacterial and antitumor properties, and good biocompatibility of carbon dots. Based on these advantages, the application of Ch-CDs in the biomedical field has attracted significant interest among researchers. However, a comprehensive review of the selection of precursors for Ch-CDs, preparation methods, and applications in biomedical fields is still lacking. Here, we summarize their precursor selection and preparation methods based on recent reports on Ch-CDs and provide the first comprehensive review for specific applications in biomedical engineering, such as biosensing, bioimaging, drug carriers, antibacterial and antibiofilm, and enzyme activity modulation. Finally, we discuss application prospects and challenges that need to be overcome. We hope this review will provide valuable guidance for researchers to prepare novel Ch-CDs and facilitate their application in biomedical engineering.


Assuntos
Pontos Quânticos , Pontos Quânticos/uso terapêutico , Pontos Quânticos/química , Carbono/química , Portadores de Fármacos , Engenharia Biomédica , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA