Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Small ; 20(33): e2400652, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38552224

RESUMO

Designing a reasonable heterojunction is an efficient path to improve the separation of photogenerated charges and enhance photocatalytic activity. In this study, Cu2-xS@NiFe-LDH hollow nanoboxes with core-shell structure are successfully prepared. The results show that Cu2-xS@NiFe-LDH with broad-spectrum response has good photothermal and photocatalytic activity, and the photocatalytic activity and stability of the catalyst are enhanced by the establishment of unique hollow structure and core-shell heterojunction structure. Transient PL spectra (TRPL) indicates that constructing Cu2-xS@NiFe-LDH heterojunction can prolong carrier lifetime obviously. Cu2-xS@NiFe-LDH shows a high photocatalytic hydrogen production efficiency (5176.93 µmol h-1 g-1), and tetracycline degradation efficiency (98.3%), and its hydrogen production rate is ≈10-12 times that of pure Cu2-xS and NiFe-LDH. In situ X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) provide proofs of the S-scheme electron transfer path. The S-scheme heterojunction achieves high spatial charge separation and exhibits strong photoredox ability, thus improving the photocatalytic performance.

2.
J Colloid Interface Sci ; 677(Pt B): 882-895, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39173520

RESUMO

Enhancing the velocity of the oxidation-reduction cycle is crucial for improving the catalytic efficiency of Fenton processes. Therefore, the development of an effective strategy for wastewater degradation at low temperatures is essential. In this context, we present the preparation of an NH2-MIL-88B (Fe)/CuInS2 S-scheme heterojunction. Specifically, CuInS2 nanoparticles are introduced onto the Ferro-organic skeleton, resulting in the exposure of a significant number of active surface sites. Furthermore, NH2-MIL-88B (Fe)/CuInS2 demonstrates an extended photoresponse into the long-wavelength region, which contributes to its excellent photothermal properties. Notably, the degradation rate of tetracycline in low-temperature aqueous environments reaches as high as 99.7 %, several times higher than that of the original sample. Additionally, the hydrogen production of NH2-MIL-88B (Fe)/CuInS2 is 2.23 times that of single NH2-MIL-88B (Fe) and 3.46 times that of single CuInS2. Moreover, the system exhibits good H2O2 evolution performance, forming an efficient photo-Fenton system. The charge transfer process in S-scheme heterojunction is confirmed using in-situ X-ray photoelectron spectroscopy and electron paramagnetic resonance. Both transient photoluminescence and photo electrochemical tests further validate the enhanced photoelectrochemical properties of the NH2-MIL-88B (Fe)/CuInS2 S-scheme heterojunction. The exceptional performance of this system can be attributed to the synergistic effects of the S-scheme heterojunction and the bimetallic codoped photo-Fenton system. This research presents a novel approach for the breakdown of low-temperature wastewater using an improved photocatalytic Fenton system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA