Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 62(30): 12001-12008, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37452746

RESUMO

A europium(III) metal-organic framework (MOF), namely, {[[(CH3)2NH2]3Eu2(DTTP-2OH)2(HCOO)(H2O)]·4H2O}n (Eu-MOF, H4DTTP-2OH = 2',5'-dihydroxy-[1,1':4',1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid) has been assembled through solvothermal method. The Eu-MOF is a three-dimensional (3D) (4,4,8)-connected topological framework with binuclear Eu(III) clusters as secondary building units, in which a richly ordered hydrogen bonding network formed among the free H2O molecules, dimethylamine cations, and phenolic hydroxyl groups provides a potential pathway for proton conduction. The proton conductivity reaches the category of superionic conductors (σ > 10-4 S cm-1) at room temperature with a maximum conductivity of 1.91 × 10-3 S cm-1 at 60 °C and 98% RH. Moreover, it also can be used as a fluorescence sensor in aqueous solution with detection limits of 0.14 µM for tetracycline, 0.13 µM for oxytetracycline and 0.11 µM for doxycycline. These results pave new methods for constructing MOFs with high proton conductivity and responsive fluorescence.

2.
Inorg Chem ; 62(51): 21322-21328, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38071665

RESUMO

Lanthanide-based metal-organic frameworks show good potential for applications due to their unique structures and functional properties. A highly thermally and acid-base stable Eu-MOF was synthesized by a solvothermal method with the molecular formula {[(CH3)2NH2]2[Eu2(NDDP)2(H2O)2]·H2O}n (Eu-MOF, H4NDDP = 5,5'-(naphthalene-2,6-diyl)diisophthalic acid). Eu-MOF takes a three-dimensional (4,4,8)-connected topology. The water molecules involved in the coordination, free water molecules, and [(CH3)2NH2]+ cations in the pore can be used as proton carriers. The proton conductivity attains 1.25 × 10-4 S cm-1 at room temperature and 2.42 × 10-3 S cm-1 at 70 °C and 98% relative humidity. Combined with the dual-emission properties from the ligands and Eu(III) ions enables Eu-MOF to be used as a ratiometric fluorescent sensor for phosphate efficiently and rapidly, with a limit of detection of 0.12 µM in the Tris-HCl buffer solution. These results provide a new approach for the construction of MOFs with high proton conductivity and a ratiometric fluorescence response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA