Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Compr Rev Food Sci Food Saf ; 21(2): 1462-1490, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35201672

RESUMO

Umami is an important element affecting food taste, and the development of umami peptides is a topic of interest in food-flavoring research. The existing technology used for traditional screening of umami peptides is time-consuming and labor-intensive, making it difficult to meet the requirements of high-throughput screening, which limits the rapid development of umami peptides. The difficulty in performing a standard measurement of umami intensity is another problem that restricts the development of umami peptides. The existing methods are not sensitive and specific, making it difficult to achieve a standard evaluation of umami taste. This review summarizes the umami receptors and umami peptides, focusing on the problems restricting the development of umami peptides, high-throughput screening, and establishment of evaluation standards. The rapid screening of umami peptides was realized based on molecular docking technology and a machine learning method, and the standard evaluation of umami could be realized with a bionic taste sensor. The progress of rapid screening and evaluation methods significantly promotes the study of umami peptides and increases its application in the seasoning industry.


Assuntos
Peptídeos , Paladar , Simulação de Acoplamento Molecular , Peptídeos/química
2.
Food Chem ; 404(Pt A): 134562, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36244067

RESUMO

Umami peptides have been the focus of umami studies in recent years because of their high nutritional value and flavor activity. However, the existing screening methods of umami peptides were cumbersome, complex, time-consuming and laborious, and it was difficult to achieve high-throughput screening. In this study, a novel umami peptide rapid screening model was designed and by using lamb bone aqueous extract as raw material, through the step-by-step screening of peptidomics, machine learning methods, and molecular docking technology. Results showed that six novel peptides about lamb bones were obtained, which verified the feasibility of the model and could be used for high-throughput screening of umami peptides. Results of molecular docking between umami peptide and T1R3 subunit revealed that the main interaction forces were hydrogen bonding and electrostatic interaction, and the key binding sites were GLU277 and SER146. It provides the basis for studying the binding mechanism of umami peptide.


Assuntos
Receptores Acoplados a Proteínas G , Paladar , Ovinos , Animais , Simulação de Acoplamento Molecular , Receptores Acoplados a Proteínas G/metabolismo , Peptídeos/química , Aprendizado de Máquina
3.
Food Chem ; 394: 133504, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35749874

RESUMO

The existing technology used for screening umami peptides is time-consuming and labor-intensive, making it difficult to meet the requirements of rapid screening of peptides. In this study, a high-throughput screening method for umami peptides was established based on peptidomics and virtual screening including the mass spectrometry, iUmami-SCM, PeptideRanker, and T1R1/T1R3 receptor. Subsequently, they were characterized and validated using sensory evaluation and electronic tongue. Results showed that 18 potential umami peptides were screened from two clams. Among them, 16 peptides had umami characteristics with thresholds range 0.123-1.481 mmol/L, and the accuracy of the screening method was about 88.9%. Additionally, active sites such as Tyr143, Gly144, Ser146, Ala145, His121, Ser123, and Glu277 may play a critical role in flavor presentation by molecular docking with T1R1/T1R3. The paper could provide a fast and reliable method for screening umami peptides as well as lay the foundation for novel strategies for evaluating umami taste.


Assuntos
Bivalves , Receptores Acoplados a Proteínas G , Animais , Simulação de Acoplamento Molecular , Peptídeos/química , Paladar
4.
Biomaterials ; 288: 121697, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35953329

RESUMO

To shorten the complex and tedious process of traditional umami peptide identification, a novel model based on common feature pharmacophore (HipHop, a ligand molecule-based screening method) and molecular docking (a receptor protein-based screening method) was established for umami peptide screening. In this study, HipHop was used to perform a preliminary screening of peptides. Dipeptides with potential umami activity were docked into the umami taste receptor T1R1/T1R3 for a second screening. Twenty previously unreported umami dipeptides identified through virtual screening were validated using sensory evaluation and electronic tongue analysis. All 20 dipeptides (HE, HD, KE, EH, ET, EQ, DH, DR, DQ, DN, DY, DM, DI, DV, QE, QD, NE, ND, CE, and SE) had umami taste with umami threshold values ranging from 0.094 to 1.517 mmol/L. Therefore, when we increased the screening criteria for docking energy to -60 kcal/mol, the virtual screening results had 100% accuracy. The T1R1-peptide complexes of the four dipeptides with the lowest umami threshold values were subjected to molecular dynamics (MD) simulations for 100 ns, and the results showed that the four umami dipeptides remained in the starting active cavity. Overall, this screening strategy could be applied to the rapid screening of umami peptides in food products.


Assuntos
Dipeptídeos , Receptores Acoplados a Proteínas G , Dipeptídeos/química , Simulação de Acoplamento Molecular , Peptídeos/química , Paladar
5.
Front Nutr ; 9: 1118900, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712498

RESUMO

Lactobacillus strains fermentation of broccoli as a good source of bioactive peptides has not been fully elucidated. In this work, the peptide composition of broccoli fermented by L. plantarum A3 and L. rhamnosus ATCC7469 was analyzed by peptidomics to study the protein digestion patterns after fermentation by different strains. Results showed that water-soluble proteins such as rubisco were abundant sources of peptides, which triggered the sustained release of peptides as the main target of hydrolysis. In addition, 17 novel anti-inflammatory peptides were identified by virtual screening. Among them, SIWYGPDRP had the strongest ability to inhibit the release of NO from inflammatory cells at a concentration of 25 µM with an inhibition rate of 52.32 ± 1.48%. RFR and KASFAFAGL had the strongest inhibitory effects on the secretion of TNF-α and IL-6, respectively. At a concentration of 25 µM, the corresponding inhibition rates were 74.61 ± 1.68% and 29.84 ± 0.63%, respectively. Molecular docking results showed that 17 peptides formed hydrogen bonds and hydrophobic interactions with inducible nitric oxide synthase (iNOS). This study is conducive to the high-value utilization of broccoli and reduction of the antibiotic use.

6.
Int J Biol Macromol ; 120(Pt B): 2175-2179, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30201565

RESUMO

Calcium carbonate/xanthan gum (Ca2CO3/XG) microspheres were prepared using biomimetic mineralization method for lysozyme (Ly) adsorption. The morphology of Ca2CO3/XG microspheres was characterized by field emission scanning electron microscope (FE-SEM). The Ly adsorption behavior was verified by Fourier transform infrared (FTIR) and in situ fluorescence microscope images. The effects of pHs on lysozyme adsorption were investigated as well. It was revealed that CaCO3/XG microspheres could immobilize lysozyme efficiently via electrostatic interactions with adsorption rate and adsorption quantity of 58.55 ±â€¯0.56% and 18.7 ±â€¯1.2 µg/mg as the pH was 7.0. Comparatively, the values markedly improved to 80.97 ±â€¯0.15% and 24.3 ±â€¯0.1 µg/mg respectively as the pH was 9.0 (p < 0.05). Additionally, UV and fluorescence spectrum showed that Ly maintained its original secondary structure during the adsorption/desorption process. The study therefore demonstrated that CaCO3/XG microspheres can be used as a practical and efficient support for Ly adsorption and desorption.


Assuntos
Carbonato de Cálcio/química , Microesferas , Muramidase/química , Polissacarídeos Bacterianos/química , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA