Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Medicina (Kaunas) ; 60(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38256362

RESUMO

Adenoid cystic carcinoma (ACC) is a rare malignant tumor that mostly occurs in minor glands, especially in the palate. Intraosseous adenoid cystic carcinoma (IACC) is rarer. There is no clear conclusion on the clinical, radiologic and pathological characteristics of IACC because of few reported IACC cases, leading to insufficient understanding of IACC. We reviewed 52 previous reports of primary IACC (PIACC) and analyzed the clinical features of those patients involved, attempting to provide a better understanding of PIACC. Moreover, we present a case of primary PIACC and a case of recurrent IACC (RIACC). The two patients showed similarities in clinical and pathological results, along with slight differences in radiological and immunohistochemical results. The patient of case 1 seemed to display a worse prognosis, which can only be proved after long term follow-up.


Assuntos
Carcinoma Adenoide Cístico , Humanos , Carcinoma Adenoide Cístico/diagnóstico por imagem
2.
Nanotechnology ; 35(7)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37976543

RESUMO

The limited options of anabolic drugs restrict their application potential in osteoporosis treatment, despite their theoretical superiority in therapeutic efficacy over antiresorptive drugs. As a prevailing strategy, nano-delivery systems could offer a wider choice of anabolic drugs. In this study, calcium phosphate nanocomposites incorporated with simvastatin (Sim) with periostin-targeting ability were designed and prepared for osteoporosis treatment. Carboxymethyl dextran (CMD) as an anionic and hydrophilic dextran derivative was used to stabilize CaP. In addition, periosteum-targeted peptide (SDSSD) was further grafted on CMD to achieve the bone targeting function. In a one-step coordination assembly strategy, hydrophobic anabolic agent Sim and SDSSD-CMD graft (SDSSD-CMD) were incorporated into the CaP nanoparticles forming SDSSD@CaP/Sim nanocomposites. The resulting SDSSD@CaP/Sim possesses uniform size, great short-term stability and excellent biocompatibility. Moreover, SDSSD@CaP/Sim exhibited a reduced release rate of Sim and showed slow-release behaviour. As anticipated, the nanocomposites exhibited bone bonding capacity in both cellular and animal studies. Besides, SDSSD@CaP/Sim achieved obviously enhanced osteoporosis treatment effect compared to direct injection of Simin vivo. Therefore, our findings highlight the potential of SDSSD-incorporated and CaP-based nanocomposites as a viable strategy to enhance the therapeutic efficacy of anabolic drugs for osteoporosis treatment.


Assuntos
Nanocompostos , Osteoporose , Animais , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Osteoporose/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Fosfatos de Cálcio/química , Nanocompostos/uso terapêutico
3.
Prep Biochem Biotechnol ; 53(10): 1297-1305, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37040156

RESUMO

Heparinase I (EC 4.2.2.7), is an enzyme that cleaves heparin, showing great potential for eco-friendly production of low molecular weight heparin (LMWH). However, owing to its poor catalytic activity and thermal stability, the industrial application of heparinase I has been severely hindered. To improve the catalytic activity, we proposed to engineer both the substrate and Ca2+ binding domains of heparinase I. Several heparinases I from different organisms were selected for multiple sequence alignment and molecular docking to screen the key residues in the binding domain. Nine single-point mutations were selected to enhance the catalytic activity of heparinase I. Among them, T250D was the most highly active one, whereas mutations around Ca2+ binding domain yielded two active mutants. Mutant D152S/R244K/T250D with significantly increased catalytic activity was obtained by combined mutation. The catalytic efficiency of the mutant was 118,875.8 min-1·µM-1, which was improved 5.26 times. Molecular modeling revealed that the improved activity and stability of the mutants were probably attributed to the formation of new hydrogen bonds. The highly active mutant had great potential applications in industry and the strategy could be used to improve the performance of other enzymes.


HighlightsImproved catalytic activity of heparinase I by engineering the binding domains of substrate and Ca2+.The mutant D152S/R244K/T250D showed the highest catalytic performance.The increased hydrogen bonds attribute to the increased activity.


Assuntos
Heparina de Baixo Peso Molecular , Heparina , Heparina Liase/química , Simulação de Acoplamento Molecular , Heparina/química , Mutação
4.
Medicina (Kaunas) ; 59(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38004005

RESUMO

Ameloblastoma is the most common benign odontogenic tumor with local invasion and high recurrence, which generally occurs in the jaw bones. Hypercalcemia is a common paraneoplastic syndrome that is commonly observed in patients with malignancies but rarely encountered in patients with benign tumors. Thus far, not many cases of ameloblastoma with hypercalcemia have been reported, and the pathogenic mechanism has not been studied in depth. This paper presents a case report of a 26-year-old male diagnosed with giant ameloblastoma of the mandible, accompanied by rare hypercalcemia. Additionally, a review of the relevant literature is conducted. This patient initially underwent marsupialization, yet this treatment was not effective, which indicated that the selection of the appropriate operation is of prime importance for improving the prognosis of patients with ameloblastoma. The tumor not only failed to shrink but gradually increased in size, accompanied by multiple complications including hypercalcemia, renal dysfunction, anemia, and cachexia. Due to the contradiction between the necessity of tumor resection and the patient's poor systemic condition, we implemented a multi-disciplinary team (MDT) meeting to better evaluate this patient's condition and design an individualized treatment strategy. The patient subsequently received a variety of interventions to improve the general conditions until he could tolerate surgery, and finally underwent the successful resection of giant ameloblastoma and reconstruction with vascularized fibular flap. No tumor recurrence or distance metastasis was observed during 5 years of follow-up. Additionally, the absence of hypercalcemia recurrence was also noted.


Assuntos
Ameloblastoma , Hipercalcemia , Neoplasias Mandibulares , Masculino , Humanos , Adulto , Ameloblastoma/complicações , Ameloblastoma/cirurgia , Ameloblastoma/diagnóstico , Hipercalcemia/etiologia , Neoplasias Mandibulares/complicações , Neoplasias Mandibulares/cirurgia , Neoplasias Mandibulares/diagnóstico , Recidiva Local de Neoplasia/patologia , Mandíbula/patologia
5.
Anal Chem ; 94(34): 11745-11752, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35975698

RESUMO

Direct visualization of single-nucleotide variation (SNV) in single cells is of great importance for understanding the spatial organization of genomes and their relationship with cell phenotypes. Herein, we developed a new strategy for visualizing SNVs in a nuclear genome using colocalization of dual-engineered CRISPR probes (CoDEC). By engineering the structure of sgRNA, we incorporated a hairpin in the spacer domain for improving SNV recognition specificity and a loop in the nonfunctional domain for localized signal amplification. Using guide probe-based colocalization strategy, we can successfully distinguish on-target true positive signals from the off-target false positives with high accuracy. Comparing with a proximity ligation-based assay (CasPLA), the probe colocalization strategy extended applicable target gene sites (the distance between two designed probes can be extended to around 200nt) and improved detection efficiency. This newly developed method provides a facile way for studying in situ information on SNVs in individual cells for basic research and clinical applications with single-molecule and single-nucleotide resolutions.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Nucleotídeos , Núcleo Celular/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Nanotecnologia
6.
Environ Res ; 215(Pt 1): 114181, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36113572

RESUMO

Traffic-related air pollution (TRAP) has been a common public health problem, which is associated with central nervous system dysfunction according to large-scale epidemiological studies. Current studies are mostly limited to artificial laboratory exposure environments and specific genetic mechanisms remain unclear. Therefore, we chose a real-world transportation environment to expose aged mice, transporting them from the laboratory to a 1-m-high dry platform inside the campus and tunnel, and the mice were exposed daily from 7 a.m. to 7 p.m. for 2, 4 and 12 weeks respectively. Compared with the control group (in campus), the memory function of mice in the experimental group (in tunnel) was significantly impaired in the Morris water maze test. TRAP exposure increased the number of activated microglia in the hippocampal DG, CA1, CA3 regions and dorsolateral prefrontal cortex (dPFC). And neuroinflammation and oxidative stress levels were up-regulated in both hippocampus and dPFC of aged mice. By screening the risk genes of Alzheimer's disease, we found the mRNA and protein levels of ABCA7 were down-regulated and those of PYK2 were up-regulated. The DNA methylation ratios increased in four CpG sites of abca7 promoter region and decreased in one CpG site of pyk2 promoter region, which were consistent with the altered expression of ABCA7 and PYK2. In conclusion, exposure to the real traffic environment impaired memory function and enhanced neuroinflammation and oxidative stress responses, which could be relevant to the altered expression and DNA methylation levels of ABCA7 and PYK2. Our work provides a new and promising understanding of the pathological mechanisms of cognitive impairment caused by traffic-related air pollution.


Assuntos
Doença de Alzheimer , Quinase 2 de Adesão Focal , Transportadores de Cassetes de Ligação de ATP , Doença de Alzheimer/genética , Animais , Encéfalo/patologia , Cognição , Hipocampo/patologia , Camundongos , RNA Mensageiro
7.
Appl Opt ; 61(19): 5626-5632, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36255791

RESUMO

The stray light of gratings lowers the image contrast of augmented reality display devices based on lightguide gratings. We propose to reduce the stray light of gratings fabricated with the scanning exposure method in a Lloyd's mirror interferometer setup. The photoresist-coated substrate is moved in the longitudinal direction parallel to the exposure interference fringes during exposure to average out the laser speckle-induced noise. A phase locking module is designed to compensate for the unwanted lateral displacement caused by the straightness error and vibration of the translation stage. The stability and accuracy of phase locking in the Lloyd's mirror interferometer are analyzed with control system theory. Low-stray-light lightguide gratings were fabricated successfully. The stray light level was decreased by more than 50%, and the imaging contrast was increased from 65% to 85%.


Assuntos
Realidade Aumentada , Lasers , Luz
8.
Archaea ; 2018: 8429145, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30302054

RESUMO

An increase in the number of publications in recent years indicates that besides ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) may play an important role in nitrogen removal from wastewater, gaining wide attention in the wastewater engineering field. This paper reviews the current knowledge on AOA and AOB involved in wastewater treatment systems and summarises the environmental factors affecting AOA and AOB. Current findings reveal that AOA have stronger environmental adaptability compared with AOB under extreme environmental conditions (such as low temperature and low oxygen level). However, there is still little information on the cooperation and competition relationship between AOA and AOB, and other microbes related to nitrogen removal, which needs further exploration. Furthermore, future studies are proposed to develop novel nitrogen removal processes dominated by AOA by parameter optimization.


Assuntos
Amônia/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Interações Microbianas , Nitrogênio/metabolismo , Águas Residuárias/microbiologia , Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Oxirredução , Purificação da Água/métodos
9.
Appl Opt ; 57(35): 10152-10158, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30645219

RESUMO

The utilization of beam-carrying orbital angular momentum (OAM) for free-space optical (FSO) communication can increase channel capacity. However, the misalignment of the beam is an effect that must be mitigated in FSO communication systems. Due to the robustness of deep learning technology in pattern recognition, a neural network structure is proposed and improved to mitigate the effect of misalignment error. First, compared with the simple convolutional neural network proposed, data augmentation is adopted in the training. Then, a view-pooling layer is added after the convolutional layer. This layer can longitudinally compress feature maps from multiple receiving angles. In order to verify the performance of the proposed method, related experiments are reported in this paper. It can be seen from the results that when the tilt angle is less than 35°, the accuracy of OAM mode detection is above 99%, 93%, and 88%, respectively, corresponding to the condition of weak (Cn2=1×10-15 m-2/3), medium (Cn2=1×10-14 m-2/3) and strong (Cn2=1×10-13 m-2/3) turbulence.

11.
J Agric Food Chem ; 72(6): 3045-3054, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38307881

RESUMO

A novel heparinase III from Pedobacter schmidteae (PsHep-III) with high activity and good stability was successfully cloned, expressed, and characterized. PsHep-III displayed the highest specific activity ever reported of 192.8 U mg-1 using heparin as the substrate. It was stable at 25 °C with a half-life of 323 h in an aqueous solution. PsHep-III was employed for the depolymerization of heparin, and the enzymatic hydrolyzed products were analyzed with gel permeation chromatography and high-performance liquid chromatography. PsHep-III can break glycosidic bonds in heparin like →4]GlcNAc/GlcNAc6S/GlcNS/GlcNS6S/GlcN/GlcN6S(1 → 4)ΔUA/ΔUA2S[1 → and efficiently digest heparin into seven disaccharides including N-acetylated, N-sulfated, and N-unsubstituted modification, with molecular masses of 503, 605, 563, 563, 665, 360, and 563 Da, respectively. These results indicated that PsHep-III with broad substrate specificity could be combined with heparinase I to overcome the low selectivity at the N-acetylated modification binding sites of heparinase I. This work will contribute to the application of PsHep-III for characterizing heparin and producing low-molecular-weight heparin effectively.


Assuntos
Heparina , Polissacarídeo-Liases , Heparina/análise , Heparina/química , Heparina/metabolismo , Heparina Liase/genética , Heparina Liase/química , Heparina Liase/metabolismo , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Sítios de Ligação
12.
Int J Pharm ; 654: 123943, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38432451

RESUMO

Hypoxia as an inherent feature in tumors is firmly associated with unsatisfactory clinical outcomes of photodynamic therapy (PDT) since the lack of oxygen leads to ineffective reactive oxygen species (ROS) productivity for tumor eradication. In this study, an oxidative phosphorylation (OXPHOS) targeting nanoplatform was fabricated to alleviate hypoxia and enhance the performance of PDT by encapsulating IR780 and OXPHOS inhibitor atovaquone (ATO) in triphenylphosphine (TPP) modified poly(ethylene glycol) methyl ether-block-poly(L-lactide-co-glycolide) (mPEG-PLGA) nanocarriers (TNPs/IA). ATO by interrupting the electron transfer in OXPHOS could suppress mitochondrial respiration of tumor cells, economising on oxygen for the generation of ROS. Benefiting from the mitochondrial targeting function of TPP, ATO was directly delivered to its site of action to obtain highlighted effect at a lower dosage. Furthermore, positioning the photosensitizer IR780 to mitochondria, a more vulnerable organelle to ROS, was a promising method to attenuate the spatiotemporal limitation of ROS caused by its short half-life and narrow diffusion radius. As a result, TNPs/IA exhibited accurate subcellular localization, lead to the collapse of ATP production by damaging mitochondrion and elicited significant antitumor efficacy via oxygen-augmented PDT in the HeLa subcutaneous xenograft model. Overall, TNPs/IA was a potential strategy in photodynamic eradication of tumors.


Assuntos
Nanopartículas , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio , Fosforilação Oxidativa , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Nanopartículas/ultraestrutura , Oxigênio , Hipóxia/tratamento farmacológico , Linhagem Celular Tumoral
13.
Int J Biol Macromol ; 266(Pt 1): 130838, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521322

RESUMO

Innovative antibacterial therapies using nanomaterials, such as photothermal (PTT) and photodynamic (PDT) treatments, have been developed for treating wound infections. However, creating secure wound dressings with these therapies faces challenges. The primary focus of this study is to prepare an antibacterial nanofiber dressing that effectively incorporates stable loads of functional nanoparticles and demonstrates an efficient synergistic effect between PTT and PDT. Herein, a composite nanofiber mat was fabricated, integrating spherical molybdenum disulfide (MoS2) nanoparticles. MoS2 was deposited onto polylactic acid (PLA) nanofiber mats using vacuum filtration, which was further stabilized by sodium carboxymethyl cellulose (CMC) adhesion and glutaraldehyde (GA) cross-linking. The composite nanofibers demonstrated synergistic antibacterial effects under NIR light irradiation, and the underlying mechanism was explored. They induce bacterial membrane permeability, protein leakage, and intracellular reactive oxygen species (ROS) elevation, ultimately leading to >95 % antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), which is higher than that of single thermotherapy (almost no antibacterial activity) or ROS therapy (about 80 %). In addition, the composite nanofiber mats exhibited promotion effects on infected wound healing in vivo. This study demonstrates the great prospects of composite nanofiber dressings in clinical treatment of bacterial-infected wounds.


Assuntos
Antibacterianos , Carboximetilcelulose Sódica , Dissulfetos , Escherichia coli , Molibdênio , Nanofibras , Fotoquimioterapia , Staphylococcus aureus , Molibdênio/química , Molibdênio/farmacologia , Dissulfetos/química , Dissulfetos/farmacologia , Nanofibras/química , Antibacterianos/farmacologia , Antibacterianos/química , Fotoquimioterapia/métodos , Carboximetilcelulose Sódica/química , Carboximetilcelulose Sódica/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Escherichia coli/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Terapia Fototérmica/métodos , Bandagens
14.
ACS Nano ; 18(5): 4038-4055, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38270088

RESUMO

Diagnosis of benign and malignant small nodules of the lung remains an unmet clinical problem which is leading to serious false positive diagnosis and overtreatment. Here, we developed a serum protein fishing-based spectral library (ProteoFish) for data independent acquisition analysis and a machine learning-boosted protein panel for diagnosis of early Non-Small Cell Lung Cancer (NSCLC) and classification of benign and malignant small nodules. We established an extensive NSCLC protein bank consisting of 297 clinical subjects. After testing 5 feature extraction algorithms and six machine learning models, the Lasso algorithm for a 15-key protein panel selection and Random Forest was chosen for diagnostic classification. Our random forest classifier achieved 91.38% accuracy in benign and malignant small nodule diagnosis, which is superior to the existing clinical assays. By integrating with machine learning, the 15-key protein panel may provide insights to multiplexed protein biomarker fishing from serum for facile cancer screening and tackling the current clinical challenge in prospective diagnostic classification of small nodules of the lung.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Estudos Prospectivos , Tomografia Computadorizada por Raios X , Pulmão/patologia , Algoritmos , Aprendizado de Máquina , Proteínas Sanguíneas
15.
Yi Chuan ; 35(6): 714-26, 2013 Jun.
Artigo em Zh | MEDLINE | ID: mdl-23774016

RESUMO

Despite the rediscovery of heterosis about a century ago and the suggestion of various genetic models to explain this phenomenon, little consensus has yet been reached about the genetic basis of heterosis. Following the genome organization variation and gene effects, an understanding of gene differential expression in hybrids and its parents provides a new opportunity to speculate on mechanisms that might lead to heterosis. Investigation on allele-specific gene expression in hybrid and gene differential expression between hybrids and its parents might contribute to improve our understanding of the molecular basis of heterosis and eventually guide breeding practices. In this review, we discussed the recent researches on allelic-specific expression in hybrid which was frequently observed in recent studies and analyzed its regulatory mechanism. All possible modes of gene action, including additivity, high- and low-parent dominance, underdominance, and over-dominance, were observed when investigating gene differential expression between hybrids and its parents. Data from transcriptomic studies screened several heterosis-associated genes and highlighted the importance of certain key biochemical pathways that may prove to be quintessential for the manifestation of heterosis. So far, no uniform global expression pat-terns were observed in these gene expression studies. Most heterosis-associated gene expression analyses have not revealed a predominant functional category to which differentially expressed genes belong. However, these gene expression profiling studies represent a first step towards the definition of the complex gene expression networks that might be relevant in the context of heterosis. New technique on gene expression profile and advancements in bioinformatics will facilitate our understanding of the genetic basis of heterosis at the gene-expression level.


Assuntos
Perfilação da Expressão Gênica , Vigor Híbrido
16.
Chem Biol Interact ; 370: 110314, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36535311

RESUMO

Epidemiological studies have shown that low doses of lithium in the environment can have beneficial effects on mental health. Autism spectrum disorder, a neurodevelopmental disorder in which patients exhibit abnormal behaviors, pharmacological interventions usually relied on a range of psychotropic medications. However, such medications often produce severe side effects or are ineffective in symptoms. Finding alternative ways to improve abnormal behaviors in individuals with autism are warranted, in which case lithium may be a relatively safe and effective medication. Lithium salt therapy is used to treat a variety of neuropsychiatric disorders and has neuroprotective effects. In this study, we investigated the effects of different doses of lithium on neurobehavioural disorders using the rat model of autism established by valproic acid (VPA) injection. Lithium was observed to have an ameliorative effect on the social cognitive, social memory and anxiety levels in the rat model of autism. Immunofluorescence staining showed that subchronic LiCl administration (1.0 mmol/kg) significantly reduced the number of Iba-1 positive cells in the CA1 region of the hippocampus in VPA group and brought it close to the levels of control group. Significantly lower levels of the pro-inflammatory marker IL-6 were observed in the hippocampus and serum after lithium treatment. In addition, the lithium treatment increased the levels of H3K9 acetylation in the hippocampus of VPA-exposed rats. The results showed a defensive effect of environment-related lithium exposure doses on neurobehavioural deficits in the rat valproic acid model of autism, suggesting that it may be a potential drug for the treatment of autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Ratos , Animais , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Transtorno Autístico/induzido quimicamente , Lítio/uso terapêutico , Lítio/farmacologia , Transtorno do Espectro Autista/induzido quimicamente , Hipocampo , Compostos de Lítio/farmacologia , Compostos de Lítio/uso terapêutico
17.
Nanomaterials (Basel) ; 13(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37176991

RESUMO

Breast cancer is a common malignant tumor among women and has a higher risk of early recurrence, distant metastasis, and poor prognosis. Systemic chemotherapy is still the most widely used treatment for patients with breast cancer. However, unavoidable side effects and acquired resistance severely limit the efficacy of treatment. The multi-drug combination strategy has been identified as an effective tumor therapy pattern. In this investigation, we demonstrated a triple collaboration strategy of incorporating the chemotherapeutic drug doxorubicin (DOX) and anti-angiogenesis agent combretastatin A4 (CA4) into poly(lactic-co-glycolic acid) (PLGA)-based co-delivery nanohybrids (PLGA/DC NPs) via an improved double emulsion technology, and then a polydopamine (PDA) was modified on the PLGA/DC NPs' surface through the self-assembly method for photothermal therapy. In the drug-loaded PDA co-delivery nanohybrids (PDA@PLGA/DC NPs), DOX and CA4 synergistically induced tumor cell apoptosis by interfering with DNA replication and inhibiting tumor angiogenesis, respectively. The controlled release of DOX and CA4-loaded PDA@PLGA NPs in the tumor region was pH dependent and triggered by the hyperthermia generated via laser irradiation. Both in vitro and in vivo studies demonstrated that PDA@PLGA/DC NPs enhanced cytotoxicity under laser irradiation, and combined therapeutic effects were obtained when DOX, CA4, and PDA were integrated into a single nanoplatform. Taken together, the present study demonstrates a nanoplatform for combined DOX, CA4, and photothermal therapy, providing a potentially promising strategy for the synergistic treatment of breast cancer.

18.
ACS Nano ; 17(15): 15025-15043, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37481734

RESUMO

CRISPR/Cas9 systems have great potential to achieve sophisticated gene therapy and cell engineering by editing multiple genomic loci. However, to achieve efficient multiplex gene editing, the delivery system needs adequate capacity to transfect all CRISPR/Cas9 RNA species at the required stoichiometry into the cytosol of each individual cell. Herein, inspired by biomineralization in nature, we develop an all-in-one biomimetic mineralized CRISPR/Cas9 RNA delivery system. This system allows for precise control over the coencapsulation ratio between Cas9 mRNA and multiple sgRNAs, while also exhibiting a high RNA loading capacity. In addition, it enhances the storage stability of RNA at 4 °C for up to one month, and the surface of the nanoparticles can be easily functionalized for precise targeting of RNA nanoparticles in vivo at nonliver sites. Based on the above characteristics, as a proof-of-concept, our system was able to achieve significant gene-editing at each target gene (Survivin: 31.9%, PLK1: 24.41%, HPV: 23.2%) and promote apoptosis of HeLa cells in the mouse model, inhibiting tumor growth without obvious off-target effects in liver tissue. This system addresses various challenges associated with multicomponent RNA delivery in vivo, providing an innovative strategy for the RNA-based CRISPR/Cas9 gene editing.


Assuntos
Edição de Genes , Nanopartículas , Camundongos , Animais , Humanos , Sistemas CRISPR-Cas/genética , RNA , Células HeLa , Biomimética , RNA Guia de Sistemas CRISPR-Cas
19.
J Hazard Mater ; 454: 131483, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37116328

RESUMO

Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, Rox(V)), an extensively used organoarsenical feed additive, enters soils through the application of Rox(V)-containing manure and further degrades to highly toxic arsenicals. Microplastics, as emerging contaminants, are also frequently detected in soils. However, the effects of microplastics on soil Rox(V) degradation are unknown. A microcosm experiment was conducted to investigate soil Rox(V) degradation responses to polyethylene (PE) microplastics and the underlying mechanisms. PE microplastics inhibited soil Rox(V) degradation, with the main products being 3-amino-4-hydroxyphenylarsonic acid [3-AHPAA(V)], N-acetyl-4-hydroxy-m-arsanilic acid [N-AHPAA(V)], arsenate [As(V)], and arsenite [As(III)]. This inhibition was likely driven by the decline in soil pH by PE microplastic addition, which may directly enhance Rox(V) sorption in soils. The decreased soil pH further suppressed the nfnB gene related to nitroreduction of Rox(V) to 3-AHPAA(V) and nhoA gene associated with acetylation of 3-AHPAA(V) to N-AHPAA(V), accompanied by a decrease in the relative abundance of possible Rox(V)-degrading bacteria (e.g., Pseudomonadales), although the diversity, composition, network complexity, and assembly of soil bacterial communities were largely influenced by Rox(V) rather than PE microplastics. Our study emphasizes microplastic-induced inhibition of Rox(V) degradation in soils and the need to consider the role of microplastics in better risk assessment and remediation of Rox(V)-contaminated soils.


Assuntos
Roxarsona , Roxarsona/química , Microplásticos , Plásticos , Solo/química , Polietileno
20.
Polymers (Basel) ; 15(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37050390

RESUMO

Heparinase I (Hep I), which specifically degrades heparin to oligosaccharide or unsaturated disaccharide, has an important role in the production of low molecular weight heparin (LMWH). However, low productivity and stability of heparinase I hinders its applications. Here, a novel heparinase I (BxHep-I) was cloned from Bacteroides xylanisolvens and overexpressed in soluble form in Escherichia coli. The expression conditions of BxHep-I were optimized for an activity of 7144 U/L. BxHep-I had a specific activity of 57.6 U/mg at the optimal temperature and pH of 30 °C and pH 7.5, with the Km and Vmax of 0.79 mg/mL and 124.58 U/mg, respectively. BxHep-I catalytic activity could be enhanced by Ca2+ and Mg2+, while strongly inhibited by Zn2+ and Co2+. Purified BxHep-I displayed an outstanding thermostability with half-lives of 597 and 158 min at 30 and 37 °C, respectively, which are the highest half-lives ever reported for heparinases I. After storage at 4 °C for one week, BxHep-I retained 73% of its initial activity. Molecular docking revealed that the amino acids Asn25, Gln27, Arg88, Lys116, His156, Arg161, Gln228, Tyr356, Lys358, and Tyr362 form 13 hydrogen bonds with the substrate heparin disaccharides in the substrate binding domain and are mainly involved in the substrate binding of BxHep-I. These results suggest that the BxHep-I with high stability could be a candidate catalyst for the industrial production of LMWH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA