Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Lett ; 46(3): 399-407, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38416308

RESUMO

OBJECTIVE: A convenient strategy was developed to recycle selectable markers using Cre/loxP system for constructing Komagataella phaffii strains co-expressing multiple proteins. RESULTS: A plasmid in this strategy was generated from pPICZαA with integration of lox71-Sh ble-lox66. Firstly, the plasmid was inserted with one target protein gene and then transformed into K. phaffii KM71. Secondly, the auxiliary plasmid pPICZαA/cre/his4 containing CRE recombinase gene was further chromosomally inserted to Sh ble gene therein. Finally, methanol induction was conducted to produce CRE for Cre/loxP-mediated recombination, and consequently, the sequence between lox71 and lox66 was deleted, leading to recycling of ZeoR and His- markers. Then the resulted strain expressing the one target protein was used as the host to which another target protein gene could be inserted by the same procedures. CONCLUSIONS: With easy manipulation, the method was effective in recycling of the selectable markers, and consequently two protein genes were sequential integrated chromosomally and successfully co-expressed in the yeast.


Assuntos
Integrases , Plasmídeos , Saccharomycetales , Integrases/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo , Plasmídeos/genética , Recombinação Genética/genética , Marcadores Genéticos/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108322

RESUMO

The young shoots of the tea plant Baiye No. 1 display an albino phenotype in the early spring under low environmental temperatures, and the leaves re-green like those of common tea cultivars during the warm season. Periodic albinism is precisely regulated by a complex gene network that leads to metabolic differences and enhances the nutritional value of tea leaves. Here, we identified messenger RNAs (mRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs) to construct competing endogenous RNA (ceRNA) regulatory networks. We performed whole-transcriptome sequencing of 12 samples from four periods (Bud, leaves not expanded; Alb, albino leaves; Med, re-greening leaves; and Gre, green leaves) and identified a total of 6325 differentially expressed mRNAs (DEmRNAs), 667 differentially expressed miRNAs (DEmiRNAs), 1702 differentially expressed lncRNAs (DElncRNAs), and 122 differentially expressed circRNAs (DEcircRNAs). Furthermore, we constructed ceRNA networks on the basis of co-differential expression analyses which comprised 112, 35, 38, and 15 DEmRNAs, DEmiRNAs, DElncRNAs, and DEcircRNAs, respectively. Based on the regulatory networks, we identified important genes and their interactions with lncRNAs, circRNAs, and miRNAs during periodic albinism, including the ceRNA regulatory network centered on miR5021x, the GAMYB-miR159-lncRNA regulatory network, and the NAC035-miR319x-circRNA regulatory network. These regulatory networks might be involved in the response to cold stress, photosynthesis, chlorophyll synthesis, amino acid synthesis, and flavonoid accumulation. Our findings provide novel insights into ceRNA regulatory mechanisms involved in Baiye No. 1 during periodic albinism and will aid future studies of the molecular mechanisms underlying albinism mutants.


Assuntos
Camellia sinensis , MicroRNAs , RNA Longo não Codificante , Camellia sinensis/genética , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transcriptoma , Temperatura , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Redes Reguladoras de Genes , Chá , Regulação Neoplásica da Expressão Gênica
3.
Plants (Basel) ; 12(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37050144

RESUMO

This study aimed to gain an understanding of the possible function of NACs by examining their physicochemical properties, structure, chromosomal location, and expression. Being a family of plant-specific transcription factors, NAC (petunia no apical meristem and Arabidopsis thaliana ATAF1, ATAF2, and CUC2) is involved in plant growth and development. None of the NAC genes has been reported in Akebia trifoliata (Thunb.) Koidz (A. trifoliata). In this study, we identified 101 NAC proteins (AktNACs) in the A. trifoliata genome by bioinformatic analysis. One hundred one AktNACs were classified into the following twelve categories based on the phylogenetic analysis of NAC protein: NAC-a, NAC-b, NAC-c, NAC-d, NAC-e, NAC-f, NAC-g, NAC-h, NAC-i, NAC-j, NAC-k, and NAC-l. The accuracy of the clustering results was demonstrated based on the gene structure and conserved motif analysis of AktNACs. In addition, we identified 44 pairs of duplication genes, confirming the importance of purifying selection in the evolution of AktNACs. The morphology and microstructure of early A. trifoliata seed development showed that it mainly underwent rapid cell division, seed enlargement, embryo formation and endosperm development. We constructed AktNACs co-expression network and metabolite correlation network based on transcriptomic and metabolomic data of A. trifoliata seeds. The results of the co-expression network showed that 25 AtNAC genes were co-expressed with 233 transcription factors. Metabolite correlation analysis showed that 23 AktNACs were highly correlated with 28 upregulated metabolites. Additionally, 25 AktNACs and 235 transcription factors formed co-expression networks with 141 metabolites, based on correlation analysis involving AktNACs, transcription factors, and metabolites. Notably, AktNAC095 participates in the synthesis of 35 distinct metabolites. Eight of these metabolites, strongly correlated with AktNAC095, were upregulated during early seed development. These studies may provide insight into the evolution, possible function, and expression of AktNACs genes.

4.
Protein Pept Lett ; 28(12): 1434-1441, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34749599

RESUMO

BACKGROUND: Pichia pastoris is one of the most popular eukaryotic hosts for producing heterologous proteins, while increasing the secretion of target proteins is still a top priority for their application in industrial fields. Recently, the research effort to enhance protein production has focused on up-regulating the unfolded protein response (UPR). OBJECTIVE: We evaluated the effects of activated UPR via Hac1p co-expression with the promoter AOX1 (PAOX1) or GAP (PGAP) on the expression of recombinant chitosanase (rCBS) in P. pastoris. METHOD: The DNA sequence encoding the chitosanase was chemically synthesized and cloned into pPICZαA, and the resulting pPICZαA/rCBS was transformed into P. pastoris for expressing rCBS. The P. pastorisHAC1i cDNA was chemically synthesized and cloned into pPIC3.5K to give pPIC3.5K/Hac1p. The HAC1i cDNA was cloned into PGAPZB and then inserted with the HIS4 gene from pAO815 to construct the vector PGAPZB/Hac1p/HIS4. For co-expression of Hac1p, the two plasmids pPIC3.5K/Hac1p and PGAPZB/Hac1p/HIS4 were transformed into P. pastoris harboring the CBS gene. The rCBS was assessed based on chitosanase activity and analyzed by SDSPAGE. The enhanced Kar2p was detected with western blotting to evaluate UPR. RESULTS: Hac1p co-expression with PAOX1 enhanced rCBS secretion by 41% at 28°C. Although the level of UPR resulting from Hac1p co-expression with PAOX1 was equivalent to that with PGAP in terms of the quantity of Kar2p (a hallmark of the UPR), substitution of PGAP for PAOX1 further increased rCBS production by 21%. The methanol-utilizing phenotype of P. pastoris did not affect rCBS secretion with or without co-expression of Hac1p. Finally, Hac1p co-expression withPAOX1 or PGAP promoted rCBS secretion from 22 to 30°C and raised the optimum induction temperature. CONCLUSION: The study indicated that Hac1p co-expression with PAOX1 or PGAP is an effective strategy to trigger UPR of P. pastoris and a feasible means for improving the production of rCBS therein.


Assuntos
Proteínas Fúngicas , Expressão Gênica , Glicosídeo Hidrolases , Proteínas Repressoras , Elementos de Resposta , Saccharomycetales , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Glicosídeo Hidrolases/biossíntese , Glicosídeo Hidrolases/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo
5.
Food Sci Nutr ; 9(5): 2508-2516, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34026067

RESUMO

The aim of this study was to identify the locations and harvest months in Guizhou province, China, producing the most suitable red dragon fruit (Hylocereus polyrhizus) for winemaking. Fruit from Guanling, Luodian and Zhenfeng counties was harvested separately from successive fruit cycles in August, September and October, respectively. The key traits measured were fruit weight, pulp yield, soluble solids content, and titratable acid. Wine characteristics measured were alcohol content, total carbohydrates, titratable acidity, volatile acidity, and betacyanin content. The overall suitability of fruit from each location for winemaking was evaluated using a multi-factor, unweighted, scorecard. On that basis, fruit from Guanling county harvested in August was the most suitable. Fruit from Luodian, and Zhenfeng was most suitable when harvested in August and September, and September, respectively. These results provide a preliminary guide for the sourcing of red dragon fruit from Guizhou for wine production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA