Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D1042-D1052, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37953308

RESUMO

StemDriver is a comprehensive knowledgebase dedicated to the functional annotation of genes participating in the determination of hematopoietic stem cell fate, available at http://biomedbdc.wchscu.cn/StemDriver/. By utilizing single-cell RNA sequencing data, StemDriver has successfully assembled a comprehensive lineage map of hematopoiesis, capturing the entire continuum from the initial formation of hematopoietic stem cells to the fully developed mature cells. Extensive exploration and characterization were conducted on gene expression features corresponding to each lineage commitment. At the current version, StemDriver integrates data from 42 studies, encompassing a diverse range of 14 tissue types spanning from the embryonic phase to adulthood. In order to ensure uniformity and reliability, all data undergo a standardized pipeline, which includes quality data pre-processing, cell type annotation, differential gene expression analysis, identification of gene categories correlated with differentiation, analysis of highly variable genes along pseudo-time, and exploration of gene expression regulatory networks. In total, StemDriver assessed the function of 23 839 genes for human samples and 29 533 genes for mouse samples. Simultaneously, StemDriver also provided users with reference datasets and models for cell annotation. We believe that StemDriver will offer valuable assistance to research focused on cellular development and hematopoiesis.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Animais , Humanos , Camundongos , Redes Reguladoras de Genes , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Reprodutibilidade dos Testes , Bases de Conhecimento , Linhagem da Célula
2.
Nucleic Acids Res ; 52(D1): D822-D834, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37850649

RESUMO

Aging entails gradual functional decline influenced by interconnected factors. Multiple hallmarks proposed as common and conserved underlying denominators of aging on the molecular, cellular and systemic levels across multiple species. Thus, understanding the function of aging hallmarks and their relationships across species can facilitate the translation of anti-aging drug development from model organisms to humans. Here, we built AgeAnnoMO (https://relab.xidian.edu.cn/AgeAnnoMO/#/), a knowledgebase of multi-omics annotation for animal aging. AgeAnnoMO encompasses an extensive collection of 136 datasets from eight modalities, encompassing 8596 samples from 50 representative species, making it a comprehensive resource for aging and longevity research. AgeAnnoMO characterizes multiple aging regulators across species via multi-omics data, comprehensively annotating aging-related genes, proteins, metabolites, mitochondrial genes, microbiotas and age-specific TCR and BCR sequences tied to aging hallmarks for these species and tissues. AgeAnnoMO not only facilitates a deeper and more generalizable understanding of aging mechanisms, but also provides potential insights of the specificity across tissues and species in aging process, which is important to develop the effective anti-aging interventions for diverse populations. We anticipate that AgeAnnoMO will provide a valuable resource for comprehending and integrating the conserved driving hallmarks in aging biology and identifying the targetable biomarkers for aging research.


Assuntos
Envelhecimento , Bases de Conhecimento , Multiômica , Animais , Humanos , Envelhecimento/genética , Biomarcadores , Longevidade/genética
3.
BMC Genomics ; 25(1): 322, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561677

RESUMO

BACKGROUND: Primulina hunanensis, a troglobitic plant within the Primulina genus of Gesneriaceae family, exhibits robust resilience to arid conditions and holds great horticultural potential as an ornamental plant. The work of chloroplast genome (cpDNA) has been recently accomplished, however, the mitochondrial genome (mtDNA) that is crucial for plant evolution has not been reported. RESULTS: In this study, we sequenced and assembled the P. hunanensis complete mtDNA, and elucidated its evolutionary and phylogenetic relationships. The assembled mtDNA spans 575,242 bp with 43.54% GC content, encompassing 60 genes, including 37 protein-coding genes (PCGs), 20 tRNA genes, and 3 rRNA genes. Notably, high number of repetitive sequences in the mtDNA and substantial sequence translocation from chloroplasts to mitochondria were observed. To determine the evolutionary and taxonomic positioning of P. hunanensis, a phylogenetic tree was constructed using mitochondrial PCGs from P. hunanensis and 32 other taxa. Furthermore, an exploration of PCGs relative synonymous codon usage, identification of RNA editing events, and an investigation of collinearity with closely related species were conducted. CONCLUSIONS: This study reports the initial assembly and annotation of P. hunanensis mtDNA, contributing to the limited mtDNA repository for Gesneriaceae plants and advancing our understanding of their evolution for improved utilization and conservation.


Assuntos
Genoma de Cloroplastos , Genoma Mitocondrial , Lamiales , Filogenia , DNA Mitocondrial/genética , Lamiales/genética , Mitocôndrias/genética
4.
Nat Immunol ; 13(7): 642-50, 2012 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-22610140

RESUMO

Emerging concepts suggest that the functional phenotype of macrophages is regulated by transcription factors that define alternative activation states. We found that RBP-J, the main nuclear transducer of signaling via Notch receptors, augmented Toll-like receptor 4 (TLR4)-induced expression of key mediators of classically activated M1 macrophages and thus of innate immune responses to Listeria monocytogenes. Notch-RBP-J signaling controlled expression of the transcription factor IRF8 that induced downstream M1 macrophage-associated genes. RBP-J promoted the synthesis of IRF8 protein by selectively augmenting kinase IRAK2-dependent signaling via TLR4 to the kinase MNK1 and downstream translation-initiation control through eIF4E. Our results define a signaling network in which signaling via Notch-RBP-J and TLRs is integrated at the level of synthesis of IRF8 protein and identify a mechanism by which heterologous signaling pathways can regulate the TLR-induced inflammatory polarization of macrophages.


Assuntos
Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/imunologia , Inflamação/imunologia , Fatores Reguladores de Interferon/imunologia , Macrófagos/imunologia , Receptores Notch/imunologia , Animais , Polaridade Celular/imunologia , Proteínas de Ligação a DNA/metabolismo , Feminino , Regulação da Expressão Gênica/imunologia , Fatores Reguladores de Interferon/biossíntese , Quinases Associadas a Receptores de Interleucina-1/imunologia , Listeriose/imunologia , Ativação de Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/imunologia , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/imunologia , Fatores de Transcrição/metabolismo
5.
Mol Pharm ; 21(6): 2922-2936, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38751169

RESUMO

With the increased prevalence of nonalcoholic steatohepatitis (NASH) in the world, effective pharmacotherapy in clinical practice is still lacking. Previous studies have shown that dibenzazepine (DBZ), a Notch inhibitor, could alleviate NASH development in a mouse model. However, low bioavailability, poor water solubility, and extrahepatic side effects restrict its clinical application. To overcome these barriers, we developed a reactive oxygen species (ROS)-sensitive nanoparticle based on the conjugation of bilirubin to poly(ethylene glycol) (PEG) chains, taking into account the overaccumulation of hepatic ROS in the pathologic state of nonalcoholic steatohepatitis (NASH). The PEGylated bilirubin can self-assemble into nanoparticles in an aqueous solution and encapsulate insoluble DBZ into its hydrophobic cavity. DBZ nanoparticles (DBZ Nps) had good stability, rapidly released DBZ in response to H2O2, and effectively scavenged intracellular ROS of hepatocytes. After systemic administration, DBZ Nps could accumulate in the liver of the NASH mice, extend persistence in circulation, and improve the bioavailability of DBZ. Furthermore, DBZ Nps significantly improved glucose intolerance, relieved hepatic lipid accumulation and inflammation, and ameliorated NASH-induced liver fibrosis. Additionally, DBZ Nps had no significant extrahepatic side effects. Taken together, our results highlight the potential of the ROS-sensitive DBZ nanoparticle as a promising therapeutic strategy for NASH.


Assuntos
Lipogênese , Fígado , Camundongos Endogâmicos C57BL , Nanopartículas , Hepatopatia Gordurosa não Alcoólica , Espécies Reativas de Oxigênio , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Nanopartículas/química , Lipogênese/efeitos dos fármacos , Masculino , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Receptores Notch/metabolismo , Receptores Notch/antagonistas & inibidores , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Bilirrubina , Polietilenoglicóis/química , Modelos Animais de Doenças , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Dibenzazepinas
6.
Vox Sang ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839077

RESUMO

BACKGROUND AND OBJECTIVES: Aged red blood cell (RBC) transfusions in lung cancer patients are often related to cancer recurrence and shorter lifespans. Extracellular vesicles (EVs) accumulated in stored RBC suspensions may be one of the important influential factors. This study aims to investigate how EVs derived from RBC suspensions affect the progress of lung cancer through the most enriched microRNAs (miRNAs) previously reported in our research. STUDY DESIGN AND METHODS: EVs derived from stored RBC suspensions in Weeks 1, 3 and 5 were harvested via ultracentrifugation. Lung adenocarcinoma H1975 cells were co-cultured with EVs and transfected with miR1246 and miR150-3p mimics to evaluate alterations in their proliferation, invasion and migration abilities in vitro. Proteomics and bioinformatics were performed to predict the signalling pathway related to invasion and migration of H1975, which were verified by western blotting (WB) and flow cytometry. RESULTS: EVs derived from stored RBC suspensions in Weeks 3 and 5 could significantly enhance the invasion and migration ability of H1975 cells and also increase the expression of miR1246 and miR150-3p. After transfection with miR1246 and miR150-3p mimics, invasion, migration and proliferation of H1975 cells were obviously enhanced. Proteomics analysis demonstrated that EVs co-cultivation and miRNA transfection groups were both enriched in cell adhesion molecules. WB and cytometry indicated that integrin beta-1 (ITGB1) and Rap1b were increased. CONCLUSIONS: EVs derived from stored RBC suspensions can enhance invasion and migration ability of lung cancer cells via the most accumulated miR1246 and miR150-3p, which may increase the expression of ITGB1 through Rap1 signalling pathway.

7.
Acta Pharmacol Sin ; 45(1): 87-97, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37679644

RESUMO

Recent evidence shows a close link between Parkinson's disease (PD) and cardiac dysfunction with limited treatment options. Mitophagy plays a crucial role in the control of mitochondrial quantity, metabolic reprogramming and cell differentiation. Mutation of the mitophagy protein Parkin is directly associated with the onset of PD. Parkin-independent receptor-mediated mitophagy is also documented such as BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) and FUN14 domain containing 1 (FUNDC1) for receptor-mediated mitophagy. In this study we investigated cardiac function and mitophagy including FUNDC1 in PD patients and mouse models, and evaluated the therapeutic potential of a SGLT2 inhibitor empagliflozin. MPTP-induced PD model was established. PD patients and MPTP mice not only displayed pronounced motor defects, but also low plasma FUNDC1 levels, as well as cardiac ultrastructural and geometric anomalies (cardiac atrophy, interstitial fibrosis), functional anomalies (reduced E/A ratio, fractional shortening, ejection fraction, cardiomyocyte contraction) and mitochondrial injury (ultrastructural damage, UCP2, PGC1α, elevated mitochondrial Ca2+ uptake proteins MCU and VDAC1, and mitochondrial apoptotic protein calpain), dampened autophagy, FUNDC1 mitophagy and apoptosis. By Gene set enrichment analysis (GSEA), we found overtly altered glucose transmembrane transport in the midbrains of MPTP-treated mice. Intriguingly, administration of SGLT2 inhibitor empagliflozin (10 mg/kg, i.p., twice per week for 2 weeks) in MPTP-treated mice significantly ameliorated myocardial anomalies (with exception of VDAC1), but did not reconcile the motor defects or plasma FUNDC1. FUNDC1 global knockout (FUNDC1-/- mice) did not elicit any phenotype on cardiac geometry or function in the absence or presence of MPTP insult, but it nullified empagliflozin-caused cardioprotection against MPTP-induced cardiac anomalies including remodeling (atrophy and fibrosis), contractile dysfunction, Ca2+ homeostasis, mitochondrial (including MCU, mitochondrial Ca2+ overload, calpain, PARP1) and apoptotic anomalies. In neonatal and adult cardiomyocytes, treatment with PD neurotoxin preformed fibrils of α-synuclein (PFF) caused cytochrome c release and cardiomyocyte mechanical defects. These effects were mitigated by empagliflozin (10 µM) or MCU inhibitor Ru360 (10 µM). MCU activator kaempferol (10 µM) or calpain activator dibucaine (500 µM) nullified the empagliflozin-induced beneficial effects. These results suggest that empagliflozin protects against PD-induced cardiac anomalies, likely through FUNDC1-mediated regulation of mitochondrial integrity.


Assuntos
Doença de Parkinson , Inibidores do Transportador 2 de Sódio-Glicose , Adulto , Humanos , Camundongos , Animais , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Calpaína , Remodelação Ventricular , Proteínas Mitocondriais/metabolismo , Ubiquitina-Proteína Ligases , Atrofia , Fibrose , Proteínas de Membrana/metabolismo
8.
Appl Environ Microbiol ; 89(2): e0156822, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36752618

RESUMO

The compound 2-phenylethanol (2-PE) is a bulk flavor and fragrance with a rose-like aroma that can be produced by microbial cell factories, but its cellular toxicity inhibits cellular growth and limits strain performance. Specifically, the microbe Bacillus licheniformis has shown a strong tolerance to 2-PE. Understanding these tolerance mechanisms is crucial for achieving the hyperproduction of 2-PE. In this report, the mechanisms of B. licheniformis DW2 resistance to 2-PE were studied by multi-omics technology coupled with physiological and molecular biological approaches. 2-PE induced reactive oxygen species formation and affected nucleic acid, ribosome, and cell wall synthesis. To manage 2-PE stress, the antioxidant and global stress response systems were activated; the repair system of proteins and homeostasis of the ion and osmotic were initiated. Furthermore, the tricarboxylic acid cycle and NADPH synthesis pathways were upregulated; correspondingly, scanning electron microscopy revealed that cell morphology was changed. These results provide deeper insights into the adaptive mechanisms of B. licheniformis to 2-PE and highlight the potential targets for genetic manipulation to enhance 2-PE resistance. IMPORTANCE The ability to tolerate organic solvents is essential for bacteria producing these chemicals with high titer, yield, and productivity. As exemplified by 2-PE, bioproduction of 2-PE represents a promising alternative to chemical synthesis and plant extraction approaches, but its toxicity hinders successful large-scale microbial production. Here, a multi-omics approach is employed to systematically study the mechanisms of B. licheniformis DW2 resistance to 2-PE. As a 2-PE-tolerant strain, B. licheniformis displays multifactorial mechanisms of 2-PE tolerance, including activating global stress response and repair systems, increasing NADPH supply, changing cell morphology and membrane composition, and remodeling metabolic pathways. The current work yields novel insights into the mechanisms of B. licheniformis resistance to 2-PE. This knowledge can also be used as a clue for improving bacterial performances to achieve industrial-scale production of 2-PE and potentially applied to the production of other relevant organic solvents, such as tyrosol and hydroxytyrosol.


Assuntos
Bacillus licheniformis , Álcool Feniletílico , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Álcool Feniletílico/farmacologia , NADP/metabolismo , Ciclo do Ácido Cítrico , Redes e Vias Metabólicas
9.
PLoS Biol ; 18(2): e3000603, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32092075

RESUMO

Type 2 diabetes (T2D) is characterized by insulin resistance along with pancreatic ß cell failure. ß cell factors are traditionally thought to control glucose homeostasis by modulating insulin levels, not insulin sensitivity. Exosomes are emerging as new regulators of intercellular communication. However, the role of ß-cell-derived exosomes in metabolic homeostasis is poorly understood. Here, we report that microRNA-26a (miR-26a) in ß cells not only modulates insulin secretion and ß cell replication in an autocrine manner but also regulates peripheral insulin sensitivity in a paracrine manner through circulating exosomes. MiR-26a is reduced in serum exosomes of overweight humans and is inversely correlated with clinical features of T2D. Moreover, miR-26a is down-regulated in serum exosomes and islets of obese mice. Using miR-26a knockin and knockout mouse models, we showed that miR-26a in ß cells alleviates obesity-induced insulin resistance and hyperinsulinemia. Mechanistically, miR-26a in ß cells enhances peripheral insulin sensitivity via exosomes. Meanwhile, miR-26a prevents hyperinsulinemia through targeting several critical regulators of insulin secretion and ß cell proliferation. These findings provide a new paradigm for the far-reaching systemic functions of ß cells and offer opportunities for the treatment of T2D.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , MicroRNAs/metabolismo , Animais , Proliferação de Células , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Exossomos/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Glucose/metabolismo , Humanos , Hiperinsulinismo/prevenção & controle , Hiperplasia/prevenção & controle , Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Camundongos Obesos , Camundongos Transgênicos , MicroRNAs/sangue , MicroRNAs/genética , Comunicação Parácrina , Transdução de Sinais
10.
Exp Cell Res ; 415(2): 113114, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35339471

RESUMO

Inflammatory pathways represented by TLR4/NF-κB (Toll-like receptor 4/Nuclear factor-κB) axis signaling are activated in the pathogenesis of endotoxin-induced myocardial dysfunction (EIMD). However, the underlying mechanism by which NF-κB coordinates with other transcriptional coactivators/corepressors to regulate the expression of proinflammatory cytokine genes remains unclear. We established an EIMD-mouse model by intraperitoneal injection of lipopolysaccharides (LPS), and we discovered that NCOA1 (nuclear receptor coactivator 1) assembled with CBP (CREB binding protein) and NF-κB subunits to form a transcriptional complex that specifically bound to promoters of proinflammatory cytokine genes to activate their expression. LPS treatment also inhibited DNMT1 (DNA methyltransferase 1) expression, thereby decreasing DNA methylation of a CpG island located on the promoter of NCOA1 and causing NCOA1 overexpression. Screening small molecules that abolished NCOA1-CBP interaction in a yeast system identified a compound PSSM2126 that effectively blocked the NCOA1-CBP interaction in vitro and in vivo. Administration of PSSM2126 to EIMD mice significantly alleviated the inflammation response and improved cardiac function. Collectively, our results reveal that an NCOA1-dependent transactivation mechanism can regulate proinflammatory cytokine expression, thereby improving our understanding of the activation of NF-κB targets. The promising inhibition of the NCOA1-CBP interaction by PSSM2126 may provide a new therapeutic option for EIMD.


Assuntos
Proteína de Ligação a CREB , Coração , Inflamação , NF-kappa B , Coativador 1 de Receptor Nuclear , Animais , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Citocinas/metabolismo , Endotoxinas , Coração/fisiopatologia , Inflamação/induzido quimicamente , Inflamação/genética , Lipopolissacarídeos/farmacologia , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Coativador 1 de Receptor Nuclear/genética , Coativador 1 de Receptor Nuclear/metabolismo
11.
Cell Mol Biol Lett ; 28(1): 96, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017385

RESUMO

PSA is a type of proto-oncogene that is specifically and highly expressed in embryonic and prostate cancer cells, but not expressed in normal prostate tissue cells. The specific expression of prostate-specific antigen (PSA) is found to be related with the conditional transcriptional regulation of its promoter. Clustered regularly interspaced short palindromic repeats (CRISPR)-dCas9-KRAB is a newly developed transcriptional regulatory system that inhibits gene expression by interupting the DNA transcription process. Induction of CRISPR-dCas9-KRAB expression through the PSA promoter may help feedback inhibition of cellular PSA gene expression via single guide RNA (sgRNA), thereby monitoring and suppressing the malignant state of tumor cells. In this study, we examined the transcriptional activity of the PSA promoter in different prostate cancer cells and normal prostate epithelial cells and determined that it is indeed a prostate cancer cell-specific promoter.Then we constructed the CRISPR-dCas9-KRAB system driven by the PSA promoter, which can inhibit PSA gene expression in the prostate cancer cells at the transcriptional level, and therefore supress the malignant growth and migration of prostate cancer cells and promote their apoptosis in vitro. This study provides a potentially effective anti-cancer strategy for gene therapy of prostate cancer.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Neoplasias da Próstata , Humanos , Masculino , Antígeno Prostático Específico/genética , Próstata , RNA Guia de Sistemas CRISPR-Cas , Retroalimentação , Neoplasias da Próstata/genética , Sistemas CRISPR-Cas/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-38295311

RESUMO

Objective: This study aims to analyze the expression of colposcopy combined with PD-L1 (programmed death ligand-1) and miR-124 (microRNA-124) in CC (cervical cancer) and CIN (cervical precancerous lesions), providing insights for clinical screening and diagnosis of these conditions. Method: A total of 60 patients with suspicious cervical lesions were selected from the gynecological clinic at Jinhua People's Hospital between June 2021 and December 2021. The patients were divided into three groups: LSIL (low-grade squamous intraepithelial lesions), HSIL (high-grade squamous intraepithelial lesions), and no SIL group, with 20 cases per group. This sample distribution ensures a comprehensive representation of different lesion severities. Pathological tissues were collected from each group for immunohistochemistry analysis to assess PD-L1 expression. Peripheral blood samples were also obtained from the patients for PCR analysis to evaluate miR-124 expression. These techniques allowed us to examine the expression levels of PD-L1 and miR-124 in the samples accurately. Result: The HSIL group exhibited a higher rate of positive PD-L1 expression compared to the LSIL and no lesion groups. Additionally, the expression level of miR-124 was lower in the HSIL group compared to the LSIL and no lesion groups (P < .05). Statistical measures such as means, standard deviations, and P values were used to quantify these differences, providing a more comprehensive understanding of the results. Conclusions: Combining colposcopy results with the expression of PD-L1 and miR-124 can effectively evaluate precancerous lesions of cervical cancer. This combined approach holds significant clinical implications by potentially enhancing early detection, diagnosis, and treatment strategies for CC and CIN. Further research in this area may lead to improved patient outcomes and contribute to the development of targeted therapies.

13.
Plant Foods Hum Nutr ; 78(2): 439-444, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37351712

RESUMO

Mung bean is a kind of legume commonly eaten by human. In the present study, a HPLC method for analyzing of two C-glycoside flavonoids, isovitexin and vitexin, in Mung bean was developed. Results showed that the flavonoids are mainly existed in Mung bean coat (MBC), while kernel contains very trace. The extraction of C-glycoside flavonoids from MBC was optimized. MBC extracts with isovitexin and vitexin contents of 29.0 ± 0.28% and 35.8 ± 0.19% were obtained with yield of 1.6 ± 0.21%. MBC extracts exhibited inhibitory activities on pancreatic lipase and α-glucosidase with IC50 values of 0.147 mg/ml and 0.226 mg/ml, respectively. The inhibitory kinetics revealed that MBC extracts showed mixed-type inhibition on these enzymes. Fluorescence quenching titration confirmed the binding of MBC extracts with the enzyme proteins. In vivo study revealed that pre-administration with MBC extracts significantly reduced the triglyceride absorption. Furthermore, it also improved postprandial hyperglycemia in rats through the inhibition of α-glucosidase.


Assuntos
Fabaceae , Vigna , Ratos , Humanos , Animais , Flavonoides/farmacologia , Flavonoides/química , Lipase , alfa-Glucosidases/metabolismo , Vigna/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fabaceae/química
14.
Lab Invest ; 102(8): 872-884, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35361881

RESUMO

Lupus nephritis (LN) is associated with extensive injury and nephron loss in the afflicted kidney. Evidence has revealed the involvement of dysregulated Yin Yang 1 (YY1), a reported inflammatory modulator, in LN-induced kidney injury, and our microarray profile identified downregulated YY1 expression. Therefore, this study explored the functional relevance and mechanism of YY1 in LN-induced kidney injury. LN was modeled in mice by intraperitoneal injection of pristane, and Jurkat cells (CD41 human T lymphocytes) were activated with TNF-α to mimic the inflammatory environment found in LN. The expression patterns of YY1 and bioinformatics predictions of the downstream factor IFN-γ were confirmed in renal tissues from the mice with LN using qRT-PCR and Western blot analyses. The contents of proinflammatory cytokines in mouse serum samples and cell supernatants were determined using enzyme-linked immunosorbent assays (ELISAs). Ectopic expression and depletion approaches were subsequently used in vitro and in vivo to examine the effects of the YY1/IFN-γ/Fra2/PARP-1/FOXO1 axis on TNF-α-induced inflammation and LN-induced kidney injury. The results showed downregulated expression of YY1 and FOXO1 in the kidney tissues of the mice with LN. Increased proinflammatory factor production was observed in the mice with LN and TNF-α-treated Jurkat cell supernatant, accompanied by increased cell apoptosis and a high ratio of Th17/Treg cells, and these effects were reversed by YY1 restoration. YY1 was further shown to inhibit IFN-γ expression and thereby downregulate Fra2 expression. Fra2 depletion then inhibited PARP-1 expression and promoted FOXO1 expression to suppress cell apoptosis and the release of inflammatory factors. Collectively, our findings revealed that YY1 may alleviate LN-induced renal injury via the IFN-γ/Fra2/PARP-1/FOXO1 axis.


Assuntos
Rim , Nefrite Lúpica , Linfócitos T Reguladores , Células Th17 , Fator de Transcrição YY1 , Animais , Proteína Forkhead Box O1 , Humanos , Interferon gama/metabolismo , Rim/metabolismo , Rim/patologia , Nefrite Lúpica/metabolismo , Camundongos , Poli(ADP-Ribose) Polimerase-1 , Linfócitos T Reguladores/citologia , Células Th17/citologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
15.
Metab Eng ; 70: 43-54, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35038552

RESUMO

Due to its pleasant rose-like scent, 2-phenylethanol (2-PE) has been widely used in the fields of cosmetics and food. Microbial production of 2-PE offers a natural and sustainable production process. However, the current bioprocesses for de novo production of 2-PE suffer from low titer, yield, and productivity. In this work, a multilevel metabolic engineering strategy was employed for the high-level production of 2-PE. Firstly, the native alcohol dehydrogenase YugJ was identified and characterized for 2-PE production via genome mining and gene function analysis. Subsequently, the redirection of carbon flux into 2-PE biosynthesis by combining optimization of Ehrlich pathway, central metabolic pathway, and phenylpyruvate pathway enabled the production of 2-PE to a titer of 1.81 g/L. Specifically, AroK and AroD were identified as the rate-limiting enzymes of 2-PE production through transcription and metabolite analyses, and overexpression of aroK and aroD efficiently boosted 2-PE synthesis. The precursor competing pathways were blocked by eliminating byproduct formation pathways and modulating the glucose transport system. Under the optimal condition, the engineered strain PE23 produced 6.24 g/L of 2-PE with a yield and productivity of 0.14 g/g glucose and 0.13 g/L/h, respectively, using a complex medium in shake flasks. This work achieves the highest titer, yield, and productivity of 2-PE from glucose via the phenylpyruvate pathway. This study provides a promising platform that might be widely useful for improving the production of aromatic-derived chemicals.


Assuntos
Bacillus licheniformis , Álcool Feniletílico , Bacillus licheniformis/metabolismo , Fermentação , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Álcool Feniletílico/metabolismo
16.
Hepatology ; 73(4): 1327-1345, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32567701

RESUMO

BACKGROUND AND AIMS: Endoplasmic reticulum (ER) stress is an adaptive response to excessive ER demand and contributes to the development of numerous diseases, including nonalcoholic fatty liver disease (NAFLD), which is hallmarked by the accumulation of lipid within hepatocytes. However, the underlying mechanisms remain elusive. MicroRNAs (miRNAs) play an indispensable role in various stress responses, but their implications in ER stress have not yet been systemically investigated. In this study, we identify a negative feedback loop consisting of hepatic ER stress and miR-26a in NAFLD pathogenesis. APPROACH AND RESULTS: Combining miRNA dot blot array and quantitative PCR, we find that miR-26a is specifically induced by ER stress in liver cells. This induction of miR-26a is critical for cells to cope with ER stress. In human hepatoma cells and murine primary hepatocytes, overexpression of miR-26a markedly alleviates chemical-induced ER stress, as well as palmitate-triggered ER stress and lipid accumulation. Conversely, deficiency of miR-26a exhibits opposite effects. Mechanistically, miR-26a directly targets the eukaryotic initiation factor 2α, a core ER stress effector controlling cellular translation. Intriguingly, miR-26a is reduced in the livers of patients with NAFLD. Hepatocyte-specific restoration of miR-26a in mice significantly mitigates high-fat diet-induced ER stress and hepatic steatosis. In contrast, deficiency of miR-26a in mice exacerbates high-fat diet-induced ER stress, lipid accumulation, inflammation and hepatic steatosis. CONCLUSIONS: Our findings suggest ER stress-induced miR-26a up-regulation as a regulator for hepatic ER stress resolution, and highlight the ER stress/miR-26a/eukaryotic initiation factor 2α cascade as a promising therapeutic strategy for NAFLD.


Assuntos
Estresse do Retículo Endoplasmático , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Animais , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/fisiologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Retroalimentação Fisiológica/fisiologia , Hepatócitos/metabolismo , Hepatócitos/fisiologia , Humanos , Lipogênese/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Camundongos Transgênicos , MicroRNAs/biossíntese , MicroRNAs/genética , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade/complicações , Obesidade/metabolismo , Obesidade/fisiopatologia , Regulação para Cima
17.
Platelets ; 33(8): 1260-1269, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35968647

RESUMO

Patients have a high risk of suffering adverse reactions after receiving platelet products stored for 5 days. Bioactive exosomes in platelet products can be accumulated during storage, which is associated with adverse reactions. MicroRNAs are one of the critical cargoes in exosomes, which participate in cell differentiation, metabolism, and immunomodulation. This study intends to elucidate and analyze the differential expression of exosomal microRNAs in apheresis platelet concentrates during storage and predict the potential functions of target genes. Apheresis platelet concentrates were used to isolate exosomes by ultracentrifugation. Exosomes were phenotyped by western blot, transmission electron microscopy, and nano flow cytometry. The differential expression of the exosomal microRNAs was obtained by a microarray test using four bags of apheresis platelets stored for 5 days compared with 1 day. The differentially expressed microRNAs between the two time points were identified, and their target genes were analyzed by miRWalk and miRDB. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to predict the target genes' functions. Fifteen bags of apheresis platelet concentrates stored for 1 day and 5 days were used to verify the microarray results by quantitative reverse transcription-polymerase chain reactions (qRT-PCR). There were 134 microRNAs in total expressed differently in the two groups (day 1 and day 5), with 57 microRNAs up-regulated and 77 down-regulated (|fold change| > 2.0 and P < .05). Thirteen up-regulated microRNAs (hsa-miR-22-3p, hsa-miR-223-3p, hsa-miR-21-5p, hsa-miR-23a-3p, hsa-miR-320b, hsa-let-7a-5p, hsa-miR-25-3p, hsa-miR-126-3p, hsa-miR-320c, hsa-miR-342-3p, hsa-miR-320d, hsa-miR-328-3p, and hsa-miR-320e) detected in all samples were selected to validate the results. The qRT-PCR results showed that five (hsa-miR-22-3p, hsa-miR-223-3p, hsa-miR-21-5p, hsa-miR-23a-3p, and hsa-miR-320b) of them were increased more than 10-fold (P < .001); four (hsa-let-7a-5p, hsa-miR-25-3p, hsa-miR-126-3p, hsa-miR-320c) more than five-fold (P < .001); two (hsa-miR-342-3p and hsa-miR-320d) more than two-fold (P < .05); and two (hsa-miR-328-3p and hsa-miR-320e) more than two-fold (P > .05). Specifically, hsa-miR-22-3p increased 14.6-fold; hsa-miR-223-3p increased 13.0-fold; and hsa-miR-21-5p increased 12.0-fold. Based on bioinformatics functional analysis, target genes of top nine microRNAs (hsa-miR-22-3p, hsa-miR-223-3p, hsa-miR-21-5p, hsa-miR-23a-3p, hsa-miR-320b, hsa-let-7a-5p, hsa-miR-25-3p, hsa-miR-126-3p, and hsa-miR-320c) were annotated with positive regulation of cell proliferation and nervous system development, and mainly enriched in regulating pluripotency of stem cells signaling pathway, prolactin signaling pathway, and FoxO signaling pathway, etc. The prolactin, FoxO, ErbB, and TNF signaling pathway were relevant to immunomodulation. In particular, hsa-miR-22-3p expression was the most different during storage, with a fold change of 14.6, which might be a key mediator.


What is the context? Platelet transfusion is a widely used clinical treatment, but it is not totally safe. Side effects may happen to patients who receive the "older" platelet products. Exosomes in platelet products can be transfused to patients while receiving blood. Exosomes are accumulated in platelet products during storage. MicroRNAs are one of the important cargoes in exosomes, which can be delivered to the target cells, thus affecting their functions.This study aims to investigate and analyze the differential expression profiling of exosomal microRNAs in apheresis platelet concentrates during storage, and predict the potential function of the target genes. We found out the top nine differentially expressed microRNAs got involved in positive regulation of cell proliferation and nervous system development, and mainly enriched in regulating pluripotency of stem cells signaling pathway, prolactin signaling pathway, and FoxO signaling pathway, etc.What's new? Our study is the first one to test the exosomal microRNAs in the apheresis platelet concentrates. The apheresis platelet concentrates were stored for 1 day and 5 days. Compared the two time points, we obtained the differential expression profiling of exosomal microRNAs. Based on bioinformatics analyses and qRT-PCR results, we provided nine up-regulated microRNAs which might be critical mediators to communicate with target cells after transfusing.What's the impact? This study expands our knowledge of exosomal microRNA expression profiling from apheresis platelet concentrates along different storage periods. This might be relevant to immunomodulation in post transfusion situations.


Assuntos
Remoção de Componentes Sanguíneos , Exossomos , MicroRNAs , Biologia Computacional/métodos , Exossomos/genética , Exossomos/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Prolactina
18.
Transfus Med ; 32(2): 162-167, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35088494

RESUMO

BACKGROUND: Clinical trials of convalescent plasma therapy for coronavirus disease 2019 (COVID-19) are extensive, but the relationship between antibody titers, infused volume of plasma and virus clearance in patients remains unknown. This study proposed a possible estimating equation for clinical use of high antibody titer convalescent plasma. METHODS: A total of 38 patients were recruited in the Guanggu District Maternal and Child Health Hospital of Hubei Province from March 1 to 30, 2020. COVID-19 convalescent plasma was collected and high-titer (≥1:640) anti-S-RBD units used. The SARS-CoV-2 nucleic acid viral load was measured 24 h before and 72 h after convalescent plasma infusion. RESULTS: Convalescent plasma therapy was associated with reduced viral load in patients with moderate and severe severity. The viral negative rate at 72 h was 65.8%. The disappearance of viral nucleic acid in study patients was positively correlated with infuscate antibody titer and volume (r = 0.3375, p = 0.04). A possible estimation equation was as follows: Log10 (Reduction in viral load) = 0.18 + 0.001 × (Log2 S-RBD antibody titer × Plasma infusion volume) (r = 0.424, p = 0.009). In a single case, the viral nucleic acid persisted 14 days after the fourth plasma infusion. CONCLUSIONS: This study proposes a potential dose-response equation that adds a convenient way to estimate the dose of convalescent plasma product. It is beneficial to facilitate the rational allocation of plasma with high antibody titers and provide an individualised use strategy for convalescent plasma therapy.


Assuntos
COVID-19 , Ácidos Nucleicos , Anticorpos Antivirais , COVID-19/terapia , Criança , Humanos , Imunização Passiva , SARS-CoV-2 , Carga Viral , Soroterapia para COVID-19
19.
Ecotoxicol Environ Saf ; 241: 113710, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35679733

RESUMO

OBJECTIVE: To further investigate whether two sets of low-energy extracorporeal shock waves (LESWs) impulse parameters, i.e., 0.02 mJ/mm2 for 500 impulses and 0.04 mJ/mm2 for 500 impulses, which have been shown to directly affect the testes, can promote testicular spermatogenesis or positively regulate homeostasis of the testicular microenvironment. METHODS: (1) Twenty-four experimental rats were randomly divided into a 0.02 mJ/mm2 500 impulses group (L1 group), a 0.04 mJ/mm2 500 impulses group (M1 group), a sham intervention group (S group) and a blank control group (N group). The experiment period was 8 weeks. (2) Apoptosis of the spermatogenic cells in the left testicle was detected by the TUNEL method, VEGF and eNOs protein expression was detected by immunohistochemistry, and histomorphological changes were observed in PAS-stained sections. Moreover, the morphologies of the spermatogenic tubules and testicular stroma were quantitatively analyzed by stereological analysis. The right testicle was used for Western blot detection of the protein expression levels of Bax, Cytochrome C, Caspase-3, Bcl-2, VEGF and eNOs. RESULTS: Compared with the other three groups, the rate of M1 testicular germ cell apoptosis induced by shock treatment was higher, the expression levels of proapoptotic proteins increased significantly while that of the antiapoptotic protein was lower, and the suppression of cell proliferation correlated with the protein expression levels. Additionally, with respect to the absolute volume of the seminiferous tubules, the absolute interstitial testicular volume notably increased, producing a series of biological effects working against testicular sperm production and function. However, there was no significant difference between the L1 group and the N and S groups. CONCLUSIONS: LESWs treatment with impulse parameters of 0.02 mJ/mm2 for 500 impulses showed a better protective effect on testicular spermatic function in rats and has a positive regulatory biological effect.


Assuntos
Testículo , Fator A de Crescimento do Endotélio Vascular , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Homeostase , Masculino , Ratos , Sêmen , Espermatogênese , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Plant Foods Hum Nutr ; 77(1): 44-50, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34822099

RESUMO

Gut microbiota balance and metabolites have become a potentially mechanism in maintaining health. The specific aim of this study was to compare the modulation of puerarin and puerarin acid esters on gut microbial composition and metabolites. Male mice were fed a control diet or diets supplemented with puerarin, puerarin propanoate ester, puerarin hexanoate ester, puerarin myristate ester for 24 h, respectively. The result revealed that puerarin acid esters with different chain lengths showed different activities to create more own impacted bacterial. Puerarin propanoate and puerarin hexanoate ester significantly improved the diversity of microbiota and promoted the relative abundance of beneficial gut microbiota such as Lactobacillus, Barnesiella, Clostridium IV, Prevotella. Additionally, the puerarin propanoate ester group showed the capacity to deliver specific propionic acid to the colon. But esters with medium-long chain lengths had more opportunity to alter gut microbiota for enhancing the short chain fatty acids production. As a whole, puerarin acid esters with different chain lengths supplements shaped different gut microbial and short chain fatty acids metabolism, which could improve human health.


Assuntos
Microbioma Gastrointestinal , Animais , Ésteres , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Isoflavonas , Camundongos , Propionatos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA