Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(16): 5107-5118, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37401996

RESUMO

Zearalenone (ZEN) is a mycotoxin that causes serious threats to human health. People are exposed to ZEN contamination externally and internally through many ways, while environmental-friendly strategies for efficient elimination of ZEN are urgently needed worldwide. Previous studies revealed that the lactonase Zhd101 from Clonostachys rosea can hydrolyze ZEN to low toxicity compounds. In this work, the enzyme Zhd101 was conducted with combinational mutations to enhance its application properties. The optimal mutant (V153H-V158F), named Zhd101.1, was selected and introduced into the food-grade recombinant yeast strain Kluyveromyces lactis GG799(pKLAC1-Zhd101.1), followed by induced expression and secretion into the supernatant. The enzymatic properties of this mutant were extensively examined, revealing a 1.1-fold increase in specific activity, as well as improved thermostability and pH stability, compared to the wild-type enzyme. The ZEN degradation tests and the reaction parameters optimization were carried out in both solutions and the ZEN-contaminated corns, using the fermentation supernatants of the food-grade yeast strain. Results showed that the degradation rates for ZEN by fermentation supernatants reached 96.9% under optimal reaction conditions and 74.6% in corn samples, respectively. These new results are a useful reference to zearalenone biodegradation technologies and indicated that the mutant enzyme Zhd101.1 has potential to be used in food and feed industries. KEY POINTS: • Mutated lactonase showed 1.1-fold activity, better pH stability than the wild type. • The strain K. lactis GG799(pKLAC1-Zhd101.1) and the mutant Zhd101.1 are food-grade. • ZEN degradation rates by supernatants reached 96.9% in solution and 74.6% in corns.


Assuntos
Calosidades , Micotoxinas , Zearalenona , Humanos , Zearalenona/metabolismo , Mutação
2.
J Agric Food Chem ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600054

RESUMO

Mycotoxin contamination poses substantial health risks to humans and animals. In this study, the two laccases PpLac1 and AoLac2 from Pleurotus pulmonarius and Aspergillus oryzae were selected and heterologously expressed in Pichia pastoris in a food-grade manner to detoxify aflatoxin B1 (AFB1), zearalenone (ZEN), and deoxynivalenol (DON). Both laccases exhibited degradation activity toward these three mycotoxins, while the efficiency of these for DON was relatively low. Therefore, molecular docking between these laccases and DON was conducted to analyze their potential interaction mechanisms. Furthermore, the degradation conditions of AFB1 and ZEN by the two laccases were optimized, and the optimal degradation rates for AFB1 and ZEN by PpLac1 reached 78.51 and 78.90%, while those for AFB1 and ZEN by AoLac2 reached 72.27 and 80.60%, respectively. The laccases PpLac1 and AoLac2 successfully transformed AFB1 and ZEN into the compounds AFQ1 and 15-OH-ZEN, which were 90 and 98% less toxic than the original compounds, respectively. Moreover, the culture supernatants demonstrated effective mycotoxin degradation results for AFB1 and ZEN in contaminated feed samples. The residual levels of AFB1 and ZEN in all samples ranged from 6.61 to 8.72 µg/kg and 3.44 to 98.15 µg/kg, respectively, and these levels were below the limit set by the European Union standards. All of the results in this study indicated that the two laccases have excellent application potential in the feed industry.

3.
Materials (Basel) ; 16(9)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37176335

RESUMO

To improve electromagnetic wave (EMW) absorption performance, a novel nano-laminated Dy3Si2C2 coating was successfully in situ coated on the surface of SiC whisker (SiCw/Dy3Si2C2) using a molten salt approach. A labyrinthine three-dimensional (3D) net was constructed by the one-dimensional (1D) SiCw coated with the two-dimensional (2D) Dy3Si2C2 layer with a thickness of ~100 nm, which significantly improved the EMW absorption properties of SiCw. Compared to pure SiCw with the minimum reflection loss (RLmin) value of -10.64 dB and the effective absorption bandwidth (EAB) of 1.04 GHz for the sample with a thickness of 4.5 mm, SiCw/Dy3Si2C2 showed a significantly better EMW absorption performance with RLmin of -32.09 dB and wider EAB of 3.76 GHz for thinner samples with a thickness of 1.76 mm. The enhancement of the EMW absorption performance could be ascribed to the improvement of impedance matching, enhanced conductance loss, interfacial polarization as well as multiple scattering. The SiCw/Dy3Si2C2 can be a candidate for EMW absorber applications due to its excellent EMW absorption performance and wide EAB for relatively thin samples, light weight, as well as potential oxidation and corrosion resistance at high temperatures.

4.
J Agric Food Chem ; 71(51): 20772-20781, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-37963219

RESUMO

l-Phenyllactic acid (l-PLA) is a small molecular organic acid that exhibits a powerful capacity for inhibition against foodborne pathogens. In this work, we developed a new cost-effective and environmentally friendly process for the biosynthesis of l-PLA. This strategy designed a novel whole-cell biotransformation system employing two heterologous enzymes, namely, phenylalanine dehydrogenase (PheDH) and l-hydroxyisocaproate dehydrogenase (l-HicDH). The novelty of this strategy lies in the first-time utilization of these two enzymes, which not only enables cascade catalysis for the production of l-PLA but also facilitates the regeneration of the coenzymes (NAD+/NADH) using only two enzymes rather than introducing more heterologous enzymes to the system. Consequently, this strategy can effectively simplify the biosynthesis process of l-PLA and minimize production costs. The initial l-PLA yield using this process achieved 2.53 ± 0.07 g/L. Furthermore, through meticulous optimization of the parameters for inducible enzyme expression and l-PLA biosynthesis, the l-PLA yield was successfully increased to 4.68 ± 0.04 g/L with a yield rate of 64.54 ± 0.29%. Moreover, this novel strategy is versatile in the biosynthesis of other organic acids, which can be achieved by easily modulating the combinations of substrates and enzymes.


Assuntos
Coenzimas , Regeneração , Biotransformação , Poliésteres
5.
Sci Signal ; 16(783): eade1985, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130166

RESUMO

Coronaviruses that can infect humans can cause either common colds (HCoV-NL63, HCoV-229E, HCoV-HKU1, and HCoV-OC43) or severe respiratory symptoms (SARS-CoV-2, SARS-CoV, and MERS-CoV). The papain-like proteases (PLPs) of SARS-CoV, SARS-CoV-2, MERS-CoV, and HCoV-NL63 function in viral innate immune evasion and have deubiquitinating (DUB) and deISGylating activities. We identified the PLPs of HCoV-229E, HCoV-HKU1, and HCoV-OC43 and found that their enzymatic properties correlated with their ability to suppress innate immune responses. A conserved noncatalytic aspartic acid residue was critical for both DUB and deISGylating activities, but the PLPs had differing ubiquitin (Ub) chain cleavage selectivities and binding affinities for Ub, K48-linked diUb, and interferon-stimulated gene 15 (ISG15) substrates. The crystal structure of HKU1-PLP2 in complex with Ub revealed binding interfaces that accounted for the unusually high binding affinity between this PLP and Ub. In cellular assays, the PLPs from the severe disease-causing coronaviruses strongly suppressed innate immune IFN-I and NF-κB signaling and stimulated autophagy, whereas the PLPs from the mild disease-causing coronaviruses generally showed weaker effects on immune suppression and autophagy induction. In addition, a PLP from a SARS-CoV-2 variant of concern showed increased suppression of innate immune signaling pathways. Overall, these results demonstrated that the DUB and deISGylating activities and substrate selectivities of these PLPs differentially contribute to viral innate immune evasion and may affect viral pathogenicity.


Assuntos
COVID-19 , Papaína , Humanos , Papaína/química , Papaína/genética , Papaína/metabolismo , SARS-CoV-2/metabolismo , Peptídeo Hidrolases/metabolismo , Ubiquitina/metabolismo , Imunidade Inata
6.
Foods ; 10(6)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071975

RESUMO

Coenzyme Q0 (CoQ0) has anti-inflammatory and anti-tumor effects; however, the antimicrobial and antibiofilm activities of CoQ0 against Salmonella enterica serovar Typhimurium are unknown. Thus, we investigated the bacteriostatic and antibiofilm activities, along with the underlying mechanism, of CoQ0 against S. Typhimurium. The minimum inhibitory concentration (MIC) of CoQ0 against S. enterica serovars Typhimurium was 0.1-0.2 mg/mL (549-1098 µM), and CoQ0 at MIC and 2MIC decreased viable S. Typhimurium counts below detectable limits within 6 and 4 h, respectively. CoQ0 at 20MIC (4 mg/mL) reduced S. Typhimurium on raw chicken by 1.5 log CFU/cm3 within 6 h. CoQ0 effectively disrupted cell membrane integrity and induced morphological changes in the cell, resulting in hyperpolarization, decreased intracellular ATP concentrations, and cellular constituents leakage. Biofilm-associated S. Typhimurium cells were killed by CoQ0 treatment. These findings suggest that CoQ0 could be applied as a natural antibacterial substance for use against S. Typhimurium by the food industry.

7.
J Pharm Biomed Anal ; 164: 768-776, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30481640

RESUMO

Originally cultivated in the Peruvian Andes, Maca (Lepidium meyenii) is now widely consumed as functional food which is known for its functional characteristic like relieving fatigue and enhancing stamina. Macamides are the unique fatty acids with long-chain and N-benzylamides among the various constituents extracted from Maca. N-benzyl-(9Z, 12Z, 15Z)-octadecatrienamide, N-benzyl-(9Z, 12Z)-octadecadienamide, N-benzylhexadecanamide and N-benzyl-9Z-octadecenamide were isolated from crude Maca extracts in two steps by using a combination of high-speed countercurrent chromatography (HSCCC) and semi-preparative HPLC. The four macamides were identified by NMR, UV, HRMS and IR spectra. The thermal stability and autoxidative kinetics for N-benzyl-(9Z, 12Z, 15Z)-octadecatrienamide and N-benzyl-(9Z, 12Z)-octadecadienamide in the air were also studied at various temperatures and the apparent activation energies were 28.4 kJ/mol and 29.9 kJ/mol, respectively. The purity of the isolated macamides was up to 98% and the amount was enough for application as a reference substance.


Assuntos
Lepidium/química , Extratos Vegetais/análise , Alcamidas Poli-Insaturadas/análise , Fracionamento Químico/métodos , Cromatografia Líquida de Alta Pressão/métodos , Distribuição Contracorrente/métodos , Estabilidade de Medicamentos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Extratos Vegetais/química , Alcamidas Poli-Insaturadas/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA