Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 623(7986): 340-346, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37853124

RESUMO

Understanding the effects of cash crop expansion on natural forest is of fundamental importance. However, for most crops there are no remotely sensed global maps1, and global deforestation impacts are estimated using models and extrapolations. Natural rubber is an example of a principal commodity for which deforestation impacts have been highly uncertain, with estimates differing more than fivefold1-4. Here we harnessed Earth observation satellite data and cloud computing5 to produce high-resolution maps of rubber (10 m pixel size) and associated deforestation (30 m pixel size) for Southeast Asia. Our maps indicate that rubber-related forest loss has been substantially underestimated in policy, by the public and in recent reports6-8. Our direct remotely sensed observations show that deforestation for rubber is at least twofold to threefold higher than suggested by figures now widely used for setting policy4. With more than 4 million hectares of forest loss for rubber since 1993 (at least 2 million hectares since 2000) and more than 1 million hectares of rubber plantations established in Key Biodiversity Areas, the effects of rubber on biodiversity and ecosystem services in Southeast Asia could be extensive. Thus, rubber deserves more attention in domestic policy, within trade agreements and in incoming due-diligence legislation.


Assuntos
Conservação dos Recursos Naturais , Florestas , Mapeamento Geográfico , Borracha , Imagens de Satélites , Sudeste Asiático , Biodiversidade , Computação em Nuvem , Conservação dos Recursos Naturais/estatística & dados numéricos , Conservação dos Recursos Naturais/tendências
2.
Environ Sci Technol ; 58(19): 8464-8479, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38701232

RESUMO

Microplastics threaten soil ecosystems, strongly influencing carbon (C) and nitrogen (N) contents. Interactions between microplastic properties and climatic and edaphic factors are poorly understood. We conducted a meta-analysis to assess the interactive effects of microplastic properties (type, shape, size, and content), native soil properties (texture, pH, and dissolved organic carbon (DOC)) and climatic factors (precipitation and temperature) on C and N contents in soil. We found that low-density polyethylene reduced total nitrogen (TN) content, whereas biodegradable polylactic acid led to a decrease in soil organic carbon (SOC). Microplastic fragments especially depleted TN, reducing aggregate stability, increasing N-mineralization and leaching, and consequently increasing the soil C/N ratio. Microplastic size affected outcomes; those <200 µm reduced both TN and SOC contents. Mineralization-induced nutrient losses were greatest at microplastic contents between 1 and 2.5% of soil weight. Sandy soils suffered the highest microplastic contamination-induced nutrient depletion. Alkaline soils showed the greatest SOC depletion, suggesting high SOC degradability. In low-DOC soils, microplastic contamination caused 2-fold greater TN depletion than in soils with high DOC. Sites with high precipitation and temperature had greatest decrease in TN and SOC contents. In conclusion, there are complex interactions determining microplastic impacts on soil health. Microplastic contamination always risks soil C and N depletion, but the severity depends on microplastic characteristics, native soil properties, and climatic conditions, with potential exacerbation by greenhouse emission-induced climate change.


Assuntos
Carbono , Clima , Microplásticos , Nitrogênio , Solo , Nitrogênio/análise , Solo/química , Carbono/análise , Poluentes do Solo/análise
3.
Environ Res ; 252(Pt 2): 118945, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631466

RESUMO

Microplastics pollution and climate change are primarily investigated in isolation, despite their joint threat to the environment. Greenhouse gases (GHGs) are emitted during: the production of plastic and rubber, the use and degradation of plastic, and after contamination of environment. This is the first meta-analysis to assess underlying causal relationships and the influence of likely mediators. We included 60 peer-reviewed empirical studies; estimating GHGs emissions effect size and global warming potential (GWP), according to key microplastics properties and soil conditions. We investigated interrelationships with microbe functional gene expression. Overall, microplastics contamination was associated with increased GHGs emissions, with the strongest effect (60%) on CH4 emissions. Polylactic-acid caused 32% higher CO2 emissions, but only 1% of total GWP. Phenol-formaldehyde had the greatest (175%) GWP via 182% increased N2O emissions. Only polystyrene resulted in reduced GWP by 50%, due to N2O mitigation. Polyethylene caused the maximum (60%) CH4 emissions. Shapes of microplastics differed in GWP: fiber had the greatest GWP (66%) whereas beads reduced GWP by 53%. Films substantially increased emissions of all GHGs: 14% CO2, 10% N2O and 60% CH4. Larger-sized microplastics had higher GWP (125%) due to their 9% CO2 and 63% N2O emissions. GWP rose sharply if soil microplastics content exceeded 0.5%. Higher CO2 emissions, ranging from 4% to 20%, arose from soil which was either fine, saturated or had high-carbon content. Higher N2O emissions, ranging from 10% to 95%, arose from soils that had either medium texture, saturated water content or low-carbon content. Both CO2 and N2O emissions were 43%-56% higher from soils with neutral pH. We conclude that microplastics contamination can cause raised GHGs emissions, posing a risk of exacerbating climate-change. We show clear links between GHGs emissions, microplastics properties, soil characteristics and soil microbe functional gene expression. Further research is needed regarding underlying mechanisms and processes.


Assuntos
Aquecimento Global , Gases de Efeito Estufa , Microplásticos , Poluentes do Solo , Microplásticos/análise , Gases de Efeito Estufa/análise , Poluentes do Solo/análise , Mudança Climática , Solo/química , Poluentes Atmosféricos/análise
4.
Ecotoxicol Environ Saf ; 276: 116292, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581911

RESUMO

Calotropis gigantea (Giant milkweed, GM) has the potential to be utilized as a new feed additive for ruminants, however, the presence of unpalatable or toxic compounds decreases animal feed intake. This study aimed to valorize GM as a potential new feed resource through the chemical and microbial biotransformation of toxic compounds that will henceforth, make the plant palatable for cows. After GM's ensiling using fermentative bacteria, the plant was sampled for UHPLC-MS/MS to analyse the metabolomic changes. Illumina Miseq of the 16 S rRNA fragment genes and ITS1 were used to describe the microbial composition and structure colonizing GM silage and contributing to the biodegradation of toxic compounds. Microbial functions were predicted from metataxonomic data and KEGG pathways analysis. Eight Holstein dairy cows assigned in a cross-over design were supplemented with GM and GM silage to evaluate palatability and effects on milk yield and milk protein. Cows were fed their typical diet prior to the experiment (positive control). After ensiling, 23 flavonoids, 47 amino acids and derivatives increased, while the other 14 flavonoids, 9 amino acids and derivatives decreased, indicating active metabolism during the GM ensiling process. Lactobacillus buchneri, Bacteroides ovatus, and Megasphaera elsdenii were specific to ensiled GM and correlated to functional plant metabolites, while Sphingomonas paucimobilis and Staphylococcus saprophyticus were specific to non-ensiled GM and correlated to the toxic metabolite 5-hydroxymethylfurfural."Xenobiotics biodegradation and metabolism", "cancer overview" and "neurodegenerative disease" were the highly expressed microbial KEGG pathways in non-ensiled GM. Non-ensiled GM is unpalatable for cows and drastically reduces the animal's feed intake, whereas ensiled GM does not reduce feed intake, milk yield and milk protein. This study provides essential information for sustainable animal production by valorizing GM as a new feed additive.


Assuntos
Ração Animal , Leite , Silagem , Animais , Bovinos , Feminino , Ração Animal/análise , Lactação , Dieta/veterinária
5.
Environ Res ; 238(Pt 2): 117270, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776944

RESUMO

Screening high Cd-accumulating plants and understanding the interactions between plants, rhizospheric microbes and Cd are important in developing microbe-assisted phytoremediation techniques for Cd-contaminated soils. In this study, the Cd tolerance and accumulation characteristics of Phytolacca americana L., P. icosandra L. and P. polyandra Batalin growing in acidic Cd-contaminated soil were compared to evaluate their phytoremediation potential. According to Cd concentrations (root: 8.26-37.09 mg kg-1, shoot: 2.80-9.26 mg kg-1), bioconcentration factors (BCFs) and translocation factors (TFs), the three Phytolacca species exhibited high Cd-accumulation capacities, ranked in the following order: P. icosandra (root BCF: 1.25, shoot BCF: 0.31, TF: 0.25) > P. polyandra (root BCF: 0.68, shoot BCF: 0.26, TF: 0.44) > P. americana (root BCF: 0.28, shoot BCF: 0.09, TF: 0.38). Phytolacca icosandra and P. polyandra can thus be considered as two new Cd accumulators for phytoremediation. Soil pH, available Cd (ACd) concentration and certain bacterial taxa (e.g. Lactobacillus, Helicobacter, Alistipes, Desulfovibrio and Mucispirillum) were differentially altered in the rhizospheres of the three Phytolacca species in comparison to unplanted soil. Correlation analysis showed that there were significant interactions between rhizospheric ACd concentration, pH and Lactobacillus bacteria (L. murinus, L. gasseri and L. reuteri), which affected Cd uptake by Phytolacca plants. The mono- and co-inoculation of L. murinus strain D51883, L. gasseri strain D51533 and L. reuteri strain D24591 in the rhizosphere of P. icosandra altered the rhizospheric pH and ACd concentrations, in addition to increasing the shoot Cd contents by 31.9%-44.6%. These results suggest that recruitment of rhizospheric Lactobacillus spp. by Phytolacca plants contributes to their high Cd-accumulating characteristics. This study provides novel insights into understanding the interactions between plants, rhizobacteria and heavy metals.


Assuntos
Metais Pesados , Phytolacca , Poluentes do Solo , Cádmio/análise , Poluentes do Solo/análise , Lactobacillus , Metais Pesados/análise , Bactérias , Biodegradação Ambiental , Solo/química , Plantas
6.
Ecotoxicol Environ Saf ; 262: 115202, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37390726

RESUMO

Fungi are considered among the most efficient microbial degraders of plastics, as they produce salient enzymes and can survive on recalcitrant compounds with limited nutrients. In recent years, studies have reported numerous species of fungi that can degrade different types of plastics, yet there remain many gaps in our understanding of the processes involved in biodegradation. In addition, many unknowns need to be resolved regarding the fungal enzymes responsible for plastic fragmentation and the regulatory mechanisms which fungi use to hydrolyse, assimilate and mineralize synthetic plastics. This review aims to detail the main methods used in plastic hydrolysis by fungi, key enzymatic and molecular mechanisms, chemical agents that enhance the enzymatic breakdown of plastics, and viable industrial applications. Considering that polymers such as lignin, bioplastics, phenolics, and other petroleum-based compounds exhibit closely related characteristics in terms of hydrophobicity and structure, and are degraded by similar fungal enzymes as plastics, we have reasoned that genes that have been reported to regulate the biodegradation of these compounds or their homologs could equally be involved in the regulation of plastic degrading enzymes in fungi. Thus, this review highlights and provides insight into some of the most likely regulatory mechanisms by which fungi degrade plastics, target enzymes, genes, and transcription factors involved in the process, as well as key limitations to industrial upscaling of plastic biodegradation and biological approaches that can be employed to overcome these challenges.

7.
Int J Biometeorol ; 67(10): 1569-1579, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37522973

RESUMO

Rubber (Hevea brasiliensis) latex production is crucial to the local economy, yet Xishuangbanna's climate is considered sub-optimal for rubber cultivation. The prevalence of the powdery mildew disease (Oidium heveae) in this region has decreased the annual latex yield by 20%. Rubber latex yield is influenced by several factors, including temperature, disease, other biotic conditions, and plantation management. However, the interrelationships and potential influencing networks between rubber latex yield and these factors are rarely quantitatively assessed, and understanding their impacts on latex yield could inform better management practices. To address this gap, we investigated the effects of temperature, phenology, and powdery mildew disease on rubber latex yield in March using observational data on daily rubber latex yield combined with detailed phenology, powdery mildew, and temperature data from 2004 to 2010 in a state farm in the Xishuangbanna, Yunnan, China. We found that the critical influencing periods of daily temperature difference (or diurnal temperature difference) on the rubber latex yield were during Nov 27-Jan 19 and Jan 21-Mar 17. Partial least square regression analysis and variance partitioning analysis were conducted on the 35 phenological variables, eight powdery mildew-related variables, and two climatic variables. The most influential factors were identified as the factors of the daily temperature differences during Jan-Mar, the duration of leaf flushing phenology, and mean and maximum percentage of leaves infected by powdery mildew. Subsequent canonical correlation analysis and linear regression found that temperature difference directly affected the rubber latex yield and indirectly affected the yield through phenology and powdery mildew disease. Raised daily temperature differences from Jan to Mar had the greatest impact, leading to a higher rubber latex yield. Our comprehensive quantitative assessment revealed the relative importance of antecedent daily temperature differences, phenology, and powdery mildew disease as well as their complex interconnections in influencing rubber latex yield. Our findings are essential to future studies on both powdery mildew disease and rubber latex yield, and also develop rubber latex models.


Assuntos
Hevea , Borracha , Látex , Temperatura , China
8.
Ecotoxicol Environ Saf ; 241: 113739, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35714481

RESUMO

Screening for superior cadmium (Cd) phytoremediation resources and uncovering the mechanisms of plant response to Cd are important for effective phytoremediation of Cd-polluted soils. In this study, the characteristics of Coreopsis grandiflora related to Cd tolerance and accumulation were analyzed to evaluate its Cd phytoremediation potential. The results revealed that C. grandiflora can tolerate up to 20 mg kg-1 of Cd in the soil. This species showed relatively high shoot bioconcentration factors (1.09-1.85) and translocation factors (0.46-0.97) when grown in soils spiked with 5-45 mg kg-1 Cd, suggesting that C. grandiflora is a Cd accumulator and can potentially be used for Cd phytoextraction. Physiological analysis indicated that antioxidant enzymes (i.e., superoxide dismutase, peroxidase, and catalase) and various free amino acids (e.g., proline, histidine, and methionine) participate in Cd detoxification in C. grandiflora grown in soil spiked with 20 mg kg-1 of Cd (Cd20). The overall microbial richness and diversity remained similar between the control (Cd0) and Cd20 soils. However, the abundance of multiple rhizospheric microbial taxa was altered in the Cd20 soil compared with that in the Cd0 soil. Interestingly, many plant growth-promoting microorganisms (e.g., Nocardioides, Flavisolibacter, Rhizobium, Achromobacter, and Penicillium) enriched in the Cd20 soil likely contributed to the growth and vitality of C. grandiflora under Cd stress. Among these, some microorganisms (e.g., Rhizobium, Achromobacter, and Penicillium) likely affected Cd uptake by C. grandiflora. These abundant plant growth-promoting microorganisms potentially interacted with soil pH and the concentrations of Cd and AK in soil. Notably, potassium-solubilizing microbes (e.g., Rhizobium and Penicillium) may effectively solubilize potassium to assist Cd uptake by C. grandiflora. This study provides a new plant resource for Cd phytoextraction and improves our understanding of rhizosphere-associated mechanisms of plant adaptation to Cd-contaminated soil.


Assuntos
Asteraceae , Coreopsis , Poluentes do Solo , Asteraceae/metabolismo , Biodegradação Ambiental , Cádmio/metabolismo , Coreopsis/metabolismo , Raízes de Plantas/metabolismo , Potássio/análise , Solo/química , Poluentes do Solo/análise
9.
Int J Mol Sci ; 23(6)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35328749

RESUMO

Calotropis gigantea is often found in mining areas with heavy metal pollution. However, little is known about the physiological and molecular response mechanism of C. gigantea to Cd stress. In the present study, Cd tolerance characteristic of C. gigantea and the potential mechanisms were explored. Seed germination test results showed that C. gigantea had a certain Cd tolerance capacity. Biochemical and transcriptomic analysis indicated that the roots and leaves of C. gigantea had different responses to early Cd stress. A total of 176 and 1618 DEGs were identified in the roots and leaves of C. gigantea treated with Cd compared to the control samples, respectively. Results indicated that oxidative stress was mainly initiated in the roots of C. gigantea, whereas the leaves activated several Cd detoxification processes to cope with Cd, including the upregulation of genes involved in Cd transport (i.e., absorption, efflux, or compartmentalization), cell wall remodeling, antioxidant system, and chelation. This study provides preliminary information to understand how C. gigantea respond to Cd stress, which is useful for evaluating the potential of C. gigantea in the remediation of Cd-contaminated soils.


Assuntos
Calotropis , Poluentes do Solo , Cádmio/análise , Cádmio/toxicidade , Calotropis/genética , Folhas de Planta/química , Folhas de Planta/genética , Raízes de Plantas/química , Raízes de Plantas/genética , Poluentes do Solo/toxicidade , Transcriptoma
10.
Bioscience ; 71(6): 637-646, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34084096

RESUMO

Accelerating declines in biodiversity and unmet targets in the Convention on Biological Diversity's 2010-2020 Strategic Plan for Biodiversity are stimulating widespread calls for transformative change. Such change includes societal transitions toward sustainability, as well as in specific content of the CBD's draft Post-2020 Global Biodiversity Framework. We summarize research on transformative change and its links to biodiversity conservation, and discuss how it may influence the work of the CBD. We identify five steps to inject transformative change into the design and implementation of a new post-2020 framework: Pay attention to lessons learned from transitions research, plan for climate change, reframe area-based conservation, scale up biodiversity mainstreaming, and increase resources. These actions will transform the very nature of work under the CBD; a convention based on voluntary implementation by countries and facilitated by international administrators and experts must now accommodate a broader range of participants including businesses, Indigenous peoples, and multiple nonstate actors.

11.
Ecotoxicol Environ Saf ; 224: 112699, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34454356

RESUMO

Using animal manure as organic fertilizer to grow fodder crops is causing public health concerns because animal manure is the major reservoir of veterinary antibiotics. In this study, we used a mathematical model to estimate the risk of human exposure to veterinary antibiotics when using swine manure as organic fertilizer to grow alfalfa (Medicago sativa L.). Alfalfa was planted in a greenhouse and fertilized with swine manure spiked with oxytetracycline (OTC, at 0, 150, and 1500 mg/kg of manure), ofloxacin (OFL, at 0, 15, and 150 mg/kg), or sulfamonomethoxine (SMM, at 0, 5, 15 and 150 mg/kg). Alfalfa was harvested at the budding stage and ensiled for 60 days. Results showed that OTC and OFL could be detected in the alfalfa root, stem, and leaf with a concentration ranging from 8.85 to 59.17 µg OTC /kg and from 1.50 to 4.10 µg OFL/kg dry matter, but SMM could only be detected in the root ranging from 29.10 to 63.75 µg/kg dry matter. The ensiling for 60 days decreased the OFL concentration by 68.7% but only slightly decreased the OTC concentration. The maximum daily exposures of humans to OTC and OFL through liquid milk consumption were estimated to be 5.84E-8 and 1.63E-8 µg, respectively, both of which are well below the intake levels of OTC (72 µg) and OFL (54 µg) mandated by the European Union. The results of the present study indicate that using swine manure as organic fertilizer to grow alfalfa poses a limited risk for human exposure to veterinary antibiotics through the consumption of liquid milk.

12.
Int J Biometeorol ; 65(10): 1707-1718, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33852050

RESUMO

Rubber powdery mildew disease (Oidium heveae) is a serious threat to natural rubber production (Hevea brasiliensis) in some rubber developing regions of the world. Both phenological- and meteorological-related factors have been reported influencing the powdery mildew disease. However, few studies have investigated the effects of both phenological- and meteorological-related factors on the disease. The objective of this study is to quantify the contributions of phenological- and meteorological-related factors to affect the disease. We used the partial least squares (PLS) regression method to comprehensively quantify the effects of thirty-five phenological related factors and six meteorological factors on the infection level of powdery mildew of rubber trees over 9-year records (2003-2011). The relative contributions of significant factors were further investigated by the variation partition analysis. We found that the most influential variables were the mean temperature during winter and the duration of leaf development to maturation which explained 32 and 26% of the variations in the infection level. We found the controlling role of winter mean temperature, for the first time, on the infection level of powdery mildew. The controlling role of winter temperature may have directly increase the infection level when winter temperature is high and indirectly increase the infection level through prolonging the duration of leaf development to maturation, although the duration itself had smaller influences. We detected a warming trend of the winter temperatures from 2003 to 2011, which indicates that the infection level of powdery mildew will be increased if the winter warming continues.


Assuntos
Ascomicetos , Borracha , Doenças das Plantas , Temperatura
13.
Compr Rev Food Sci Food Saf ; 20(2): 1982-2014, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33599116

RESUMO

Wild mushrooms are a vital source of income and nutrition for many poor communities and of value to recreational foragers. Literature relating to the edibility of mushroom species continues to expand, driven by an increasing demand for wild mushrooms, a wider interest in foraging, and the study of traditional foods. Although numerous case reports have been published on edible mushrooms, doubt and confusion persist regarding which species are safe and suitable to consume. Case reports often differ, and the evidence supporting the stated properties of mushrooms can be incomplete or ambiguous. The need for greater clarity on edible species is further underlined by increases in mushroom-related poisonings. We propose a system for categorizing mushroom species and assigning a final edibility status. Using this system, we reviewed 2,786 mushroom species from 99 countries, accessing 9,783 case reports, from over 1,100 sources. We identified 2,189 edible species, of which 2,006 can be consumed safely, and a further 183 species which required some form of pretreatment prior to safe consumption or were associated with allergic reactions by some. We identified 471 species of uncertain edibility because of missing or incomplete evidence of consumption, and 76 unconfirmed species because of unresolved, differing opinions on edibility and toxicity. This is the most comprehensive list of edible mushrooms available to date, demonstrating the huge number of mushrooms species consumed. Our review highlights the need for further information on uncertain and clash species, and the need to present evidence in a clear, unambiguous, and consistent manner.


Assuntos
Agaricales , Intoxicação Alimentar por Cogumelos , Alimentos , Humanos , Intoxicação Alimentar por Cogumelos/epidemiologia
14.
Int J Biometeorol ; 64(11): 1835-1845, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32666309

RESUMO

Rubber powdery mildew caused by the foliar fungi Oidium heveae is one of the main diseases affecting rubber plantations (Hevea brasiliensis) worldwide. It is particularly serious in sub-optimal growing areas, such as Xishuangbanna in SW China. To prevent and control this disease, fungicides causing serious environmental problems are widely used. Strong correlations between the infection level and the temperature variables were reported previously, but they were related to monthly data that did not allow unraveling the patterns during the entire sensitive period. We correlated the infection level of powdery mildew of rubber trees recorded over 2003-2011 with antecedent 365 days daily temperature variables using partial least squares (PLS) regression. Our PLS regression results showed that the infection level of powdery mildew responded differently to the temperature variables of the defoliation and refoliation periods. Further analysis with Kriging interpolation showed that the infection level increased by 20% and 11%, respectively, per 1 °C rise of the daily maximum and mean temperature in the defoliation season, while it decreased by 8% and 10%, respectively, per 1 °C rise of the daily maximum and temperature difference in the refoliation season. This pattern was likely linked to the effects of temperature on leaf phenology. It seems highly possible that the infection level of powdery mildew increases, as increasing trends of maximum temperature and mean temperature during the defoliation continue.


Assuntos
Ascomicetos , Infecções , China , Humanos , Borracha , Temperatura
15.
Appl Environ Microbiol ; 85(12)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30979833

RESUMO

Deforestation has a substantial impact on aboveground biodiversity, but the response of belowground soil fungi remains poorly understood. In a tropical montane rainforest in southwestern China, plots were established along a forest degradation gradient ranging from mature and regenerated forests to open land to examine the impacts of forest degradation and deforestation on ecosystem diversity and function. Here, we evaluated the changes in belowground fungal diversity and community composition using a metabarcoding approach. Soil saprotrophic fungal richness declined with increasing forest disturbance. For example, Penicillium spp. (phosphorus [P]-solubilizing fungi) dominated in mature forest but were less abundant in regenerating forests and showed the lowest abundance in open land sites. Conversely, the abundance of facultative pathogenic fungi increased along the disturbance gradient. The decline in soil saprophytic fungi may be a direct result of forest disturbance or it may be associated with increased availability of soil phosphorus indirectly through an increase in soil pH. The increase in abundance of facultative pathogenic fungi may be related to reduced competition with saprotrophic fungi, changes in microclimate, or increased spore rain. These results demonstrate a loss of dominant P-solubilizing saprotrophic fungi along the disturbance gradient, indicating a change from soil P limitation in mature tropical forests to soil C limitation in deforested sites. The increased prevalence of pathogenic fungi may inhibit plant succession following deforestation. Overall, this research demonstrates that soil fungi can be used as a sensitive indicator for soil health to evaluate the consequences of forest disturbance.IMPORTANCE The soil fungal functional group changes in response to forest disturbance and indicates a close interaction between the aboveground plant community and the belowground soil biological community. Soil saprotrophic fungi declined in relative abundance with increasing forest disturbance. At the same time, the relative abundance of facultative pathogenic fungi increased. The loss of saprotrophic fungal richness and abundance may have been a direct result of forest disturbance or an indirect result of changes in soil pH and soil P. Furthermore, the dominant P-solubilizing saprotrophic fungi were replaced by diverse facultative pathogenic fungi, which have weaker C decomposition ability. These changes potentially indicate a shift from soil phosphate limitation to carbon limitation following deforestation. This study suggests that changes in fungal functional group composition can be used as an indicator of the effects of forest disturbance on soil carbon and nutrients.


Assuntos
Conservação dos Recursos Naturais , Florestas , Fungos/fisiologia , Microbiota , China
16.
PLoS Biol ; 14(12): e2000266, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27977663

RESUMO

The current unprecedented expansion of infrastructure promises to enhance human wellbeing but risks causing substantial harm to natural ecosystems and the benefits they provide for people. A framework for systematically and proactively identifying the likely benefits and costs of such developments is badly needed. Here, we develop and test at the subregional scale a recently proposed global scheme for comparing the potential gains from new roads for food production with their likely impact on biodiversity and ecosystem services. Working in the Greater Mekong-an exceptionally biodiverse subregion undergoing rapid development-we combined maps of isolation from urban centres, yield gaps, and the current area under 17 crops to estimate where and how far road development could in principle help to increase food production without the need for cropland expansion. We overlaid this information with maps summarising the importance of remaining habitats to terrestrial vertebrates and (as examples of major ecosystem services) to global and local climate regulation. This intersection revealed several largely converted yet relatively low-yielding areas (such as central, eastern, and northeastern Thailand and the Ayeyarwady Delta), where narrowing yield gaps by improving transport links has the potential to substantially increase food production at relatively limited environmental cost. Concentrating new roads and road improvements here while taking strong measures to prevent their spread into areas which are still extensively forested (such as northern Laos, western Yunnan, and southwestern Cambodia) could thus enhance rural livelihoods and regional food production while helping safeguard vital ecosystem services and globally significant biological diversity.


Assuntos
Meio Ambiente , Técnicas de Planejamento , Meios de Transporte , Animais , Sudeste Asiático , Biodiversidade , Custos e Análise de Custo , Ecossistema , Alimentos
18.
Int J Biometeorol ; 63(5): 607-616, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-29130120

RESUMO

The phenology of rubber trees (Hevea brasiliensis) could be influenced by meteorological factors and exhibits significant changes under different geoclimates. In the sub-optimal environment in Xishuangbanna, rubber trees undergo lengthy periods of defoliation and refoliation. The timing of refoliation from budburst to leaf aging could be affected by powdery mildew disease (Oidium heveae), which negatively impacts seed and latex production. Rubber trees are most susceptible to powdery mildew disease at the copper and leaf changing stages. Understanding and predicting leaf phenology of rubber trees are helpful to develop effective means of controlling the disease. This research investigated the effect of several meteorological factors on different leaf phenological stages in a sub-optimal environment for rubber cultivation in Jinghong, Yunnan in Southwest China. Partial least square regression was used to quantify the relationship between meteorological factors and recorded rubber phenologies from 2003 to 2011. Minimum temperature in December was found to be the critical factor for the leaf phenology development of rubber trees. Comparing the delayed effects of minimum temperature, the maximum temperature, diurnal temperature range, and sunshine hours were found to advancing leaf phenologies. A comparatively lower minimum temperature in December would facilitate the advancing of leaf phenologies of rubber trees. Higher levels of precipitation in February delayed the light green and the entire process of leaf aging. Delayed leaf phenology was found to be related to severe rubber powdery mildew disease. These results were used to build predictive models that could be applied to early warning systems of rubber powdery mildew disease.


Assuntos
Mudança Climática , Hevea/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Ascomicetos , China , Hevea/microbiologia , Modelos Teóricos , Doenças das Plantas/prevenção & controle , Folhas de Planta/microbiologia , Estações do Ano , Temperatura , Clima Tropical
19.
Int J Biometeorol ; 63(5): 617-625, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30136126

RESUMO

All rubber tree clones (Hevea brasiliensis) exhibit regular annual wintering characterized by senescence and abscission of leaves. After 3-4 weeks, this is followed by the onset of new leaves. It is likely that the timing of leaf onset affects the susceptibility of rubber trees to rubber powdery mildew disease, as this predominantly infests young leaves. However, little information is available on the phenological behavior of different rubber clones, or how meteorological factors affect such behavior. We assessed the wintering and flowering patterns of five rubber clones in Xishuangbanna, southwest China, based on observations made from 1978 to 2011, and evaluated how these patterns responded to different meteorological factors. Partial least squares regression was used to analyze the timing of defoliation, refoliation, and flowering. Our results showed that the two clones RRIM 600 and GT1 defoliated during the last week of December and refoliated in the last week of January, and clones Yunyan 277-5, Yunyan 34-4, and PR 107 defoliated during the first week of January and refoliated in the second week of February. The number of hours of sunshine during both the rainy season and the cold dry period in the dry season were important determinants of phenological changes in the rubber trees. Similarly, higher temperatures tended to delay the onset of defoliation and refoliation, and were a triggering factor for the onset of flowering. These results may help rubber cultivators to schedule appropriate disease control measures, as well as to design hybridization programs aiming at the production of clones which are resistant to foliar disease.


Assuntos
Mudança Climática/história , Flores/crescimento & desenvolvimento , Hevea/crescimento & desenvolvimento , Estações do Ano , Ascomicetos , China , História do Século XX , História do Século XXI , Doenças das Plantas/prevenção & controle , Luz Solar
20.
Asian-Australas J Anim Sci ; 32(9): 1363-1372, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30744353

RESUMO

Objective: This study was designed to investigate the effect of diet supplementation with rubber seed oil and flaxseed oil on serum fatty acids profile, oxidation stability of serum and milk, and immune function of dairy cows. Methods: Forty-eight mid-lactation Holstein dairy cows were randomly assigned to one of four treatments for 8wk, including basal diet (CON) or the basal diet supplemented with 4% rubber seed oil (RO), 4% flaxseed oil (FO) or 2% rubber seed oil plus 2% flaxseed oil (RFO) on a DM basis. Results: Compared with CON, all the oil groups increased the levels of trans-11 C18:1 (vaccenic acid, VA), cis-9, trans-11 C18:2 (conjugated linoleic acid, CLA) and C18:3 (α-linolenic acid, ALA) in serum. Both the activity of glutathione peroxidase and catalase in serum and milk in oil groups were decreased, which were negatively correlated with the levels of cis-9, trans-11 CLA and ALA. The concentrations of proinflammatory factors (TNF-α and INF-γ) in serum of oil groups were lower than that from the CON cows. Conclusion: These results indicate that diet supplementation with rubber seed oil or flaxseed oil could alter serum fatty acid profile and enhance the immune function of dairy cows. However, the negative effect on milk oxidation stability should be considered when feeding these n-3 PUFA-enriched oils in dairy production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA