Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(21): e2119765119, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35594392

RESUMO

SignificanceQuantum coherence has a fundamentally different origin for nonidentical and identical particles since for the latter a unique contribution exists due to indistinguishability. Here we experimentally show how to exploit, in a controllable fashion, the contribution to quantum coherence stemming from spatial indistinguishability. Our experiment also directly proves, on the same footing, the different role of particle statistics (bosons or fermions) in supplying coherence-enabled advantage for quantum metrology. Ultimately, our results provide insights toward viable quantum-enhanced technologies based on tunable indistinguishability of identical building blocks.

2.
Nat Mater ; 22(4): 489-494, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36959503

RESUMO

Pressure-induced magnetic phase transitions are attracting interest as a means to detect superconducting behaviour at high pressures in diamond anvil cells, but determining the local magnetic properties of samples is a challenge due to the small volumes of sample chambers. Optically detected magnetic resonance of nitrogen vacancy centres in diamond has recently been used for the in situ detection of pressure-induced phase transitions. However, owing to their four orientation axes and temperature-dependent zero-field splitting, interpreting these optically detected magnetic resonance spectra remains challenging. Here we study the optical and spin properties of implanted silicon vacancy defects in 4H-silicon carbide that exhibit single-axis and temperature-independent zero-field splitting. Using this technique, we observe the magnetic phase transition of Nd2Fe14B at about 7 GPa and map the critical temperature-pressure phase diagram of the superconductor YBa2Cu3O6.6. These results highlight the potential of silicon vacancy-based quantum sensors for in situ magnetic detection at high pressures.

3.
Phys Rev Lett ; 132(7): 070203, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38427853

RESUMO

Uncertainty relations for Hermitian operators have been confirmed through many experiments. However, previous experiments have only tested the special case of non-Hermitian operators, i.e., uncertainty relations for unitary operators. In this study, we explore uncertainty relations for general non-Hermitian operators, which include Hermitian and unitary operators as special cases. We perform experiments with both real and complex non-Hermitian operators for qubit states, and confirm the validity of the uncertainty relations within the experimental error. Our results provide experimental evidence of uncertainty relations for non-Hermitian operators. Furthermore, our methods for realizing and measuring non-Hermitian operators are valuable in characterizing open-system dynamics and enhancing parameter estimation.

4.
Nano Lett ; 23(10): 4334-4343, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37155148

RESUMO

Optically addressable spin defects in silicon carbide (SiC) have emerged as attractable platforms for various quantum technologies. However, the low photon count rate significantly limits their applications. We strongly enhanced the brightness by 7 times and spin-control strength by 14 times of single divacancy defects in 4H-SiC membranes using a surface plasmon generated by gold film coplanar waveguides. The mechanism of the plasmonic-enhanced effect is further studied by tuning the distance between single defects and the surface of the gold film. A three-energy-level model is used to determine the corresponding transition rates consistent with the enhanced brightness of single defects. Lifetime measurements also verified the coupling between defects and surface plasmons. Our scheme is low-cost, without complicated microfabrication and delicate structures, which is applicable for other spin defects in different materials. This work would promote developing spin-defect-based quantum applications in mature SiC materials.

5.
Rep Prog Phys ; 87(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38029424

RESUMO

This paper summarizes recent studies identifying key qubit systems in silicon carbide (SiC) for quantum sensing of magnetic, electric fields, and temperature at the nano and microscale. The properties of colour centres in SiC, that can be used for quantum sensing, are reviewed with a focus on paramagnetic colour centres and their spin Hamiltonians describing Zeeman splitting, Stark effect, and hyperfine interactions. These properties are then mapped onto various methods for their initialization, control, and read-out. We then summarised methods used for a spin and charge state control in various colour centres in SiC. These properties and methods are then described in the context of quantum sensing applications in magnetometry, thermometry, and electrometry. Current state-of-the art sensitivities are compiled and approaches to enhance the sensitivity are proposed. The large variety of methods for control and read-out, combined with the ability to scale this material in integrated photonics chips operating in harsh environments, places SiC at the forefront of future quantum sensing technology based on semiconductors.

6.
Phys Rev Lett ; 130(20): 200202, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37267573

RESUMO

Einstein-Podolsky-Rosen (EPR) steering is a type of characteristic nonlocal correlation and provides an important resource in quantum information tasks, especially in view of its asymmetric property. Although plenty of works on EPR steering have been reported, the study of non-Markovian evolution of EPR steering, in which the interactions between the quantum system and surrounding environment are taken into consideration, still lacks intuitive experimental evidence. Here, we experimentally observe the non-Markovian evolution of EPR steering including its sudden death and revival processes, during which the degree of memory effect plays a key role in the recovery of steering. Additionally, a strict unsteerable feature is sufficiently verified during the non-Markovian evolution within multisetting measurements. This Letter, revealing the whole evolution of EPR steering under the non-Markovian process, provides incisive insight into the applications of EPR steering in quantum open systems.

7.
Phys Rev Lett ; 130(24): 240202, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37390410

RESUMO

Contextuality is a distinctive feature of quantum theory and a fundamental resource for quantum computation. However, existing examples of contextuality in high-dimensional systems lack the necessary robustness required in experiments. Here, we address this problem by identifying a family of noncontextuality inequalities whose maximum quantum violation grows with the dimension of the system. At first glance, this contextuality is the single-system version of multipartite Bell nonlocality taken to an extreme form. What is interesting is that the single-system version achieves the same degree of contextuality but uses a Hilbert space of lower dimension. That is, contextuality "concentrates" as the degree of contextuality per dimension increases. We show the practicality of this result by presenting an experimental test of contextuality in a seven-dimensional system. By simulating sequences of quantum ideal measurements with destructive measurements and repreparation in an all-optical setup, we report a violation of 68.7 standard deviations of the simplest case of the noncontextuality inequalities identified. Our results advance the investigation of high-dimensional contextuality, its connection to the Clifford algebra, and its role in quantum computation.

8.
Nano Lett ; 22(24): 9943-9950, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36507869

RESUMO

Spin defects in silicon carbide appear to be a promising tool for various quantum technologies, especially for quantum sensing. However, this technique has been used only at ambient pressure until now. Here, by combining this technique with diamond anvil cell, we systematically study the optical and spin properties of divacancy defects created at the surface of SiC at pressures up to 40 GPa. The zero-field-splitting of the divacancy spins increases linearly with pressure with a slope of 25.1 MHz/GPa, which is almost two-times larger than that of nitrogen-vacancy centers in diamond. The corresponding pressure sensing sensitivity is about 0.28 MPa/Hz-1/2. The coherent control of divacancy demonstrates that coherence time decreases as pressure increases. Based on these, the pressure-induced magnetic phase transition of Nd2Fe14B sample at high pressures was detected. These experiments pave the way to use divacancy in quantum technologies such as pressure sensing and magnetic detection at high pressures.

9.
Opt Lett ; 47(11): 2734-2737, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35648917

RESUMO

The weak measurement wavefront sensor detects the phase gradient of light like the Shack-Hartmann sensor does. However, the use of one thin birefringent crystal to displace light beams results in a wavelength-dependent phase difference between the two polarization components, which limits the practical application. Use of a Savart plate, which consists of two such crystals, can compensate for the phase difference and realize achromatic wavefront sensing when combined with an achromatic retarder. We discuss the spatial resolution of the sensor and experimentally reconstruct a wavefront modulated by a pattern. Then we obtain the Zernike coefficients with three different wavelengths before and after modulation. Our work makes this new wavefront sensor more applicable to actual tasks like biomedical imaging.

10.
Phys Rev Lett ; 128(12): 120402, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35394318

RESUMO

Einstein-Podolsky-Rosen (EPR) steering, a category of quantum nonlocal correlations describing the ability of one observer to influence another party's state via local measurements, is different from both entanglement and Bell nonlocality by possessing an asymmetric property. For multipartite EPR steering, the monogamous situation, where two observers cannot simultaneously steer the state of the third party, has been investigated rigorously both in theory and experiment. In contrast to the monogamous situation, the shareability of EPR steering in reduced subsystems allows the state of one party to be steered by two or more observers and thus reveals more configurations of multipartite EPR steering. However, the experimental implementation of such a kind of shareability has still been absent until now. Here, in an optical experiment, we provide a proof-of-principle demonstration of the shareability of EPR steering without the constraint of monogamy in a three-qubit system. Moreover, based on the reduced bipartite EPR steering detection results, we verify the genuine three-qubit entanglement results. This work provides a complementary viewpoint for understanding multipartite EPR steering and has potential applications in many quantum information protocols, such as multipartite entanglement detection, quantum cryptography, and the construction of quantum networks.

11.
Phys Rev Lett ; 129(19): 190503, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36399745

RESUMO

Genuine multipartite entanglement represents the strongest type of entanglement, which is an essential resource for quantum information processing. Standard methods to detect genuine multipartite entanglement, e.g., entanglement witnesses, state tomography, or quantum state verification, require full knowledge of the Hilbert space dimension and precise calibration of measurement devices, which are usually difficult to acquire in an experiment. The most radical way to overcome these problems is to detect entanglement solely based on the Bell-like correlations of measurement outcomes collected in the experiment, namely, device independently. However, it is difficult to certify genuine entanglement of practical multipartite states in this way, and even more difficult to quantify it, due to the difficulty in identifying optimal multipartite Bell inequalities and protocols tolerant to state impurity. In this Letter, we explore a general and robust device-independent method that can be applied to various realistic multipartite quantum states in arbitrary finite dimension, while merely relying on bipartite Bell inequalities. Our method allows us both to certify the presence of genuine multipartite entanglement and to quantify it. Several important classes of entangled states are tested with this method, leading to the detection of genuinely entangled states. We also certify genuine multipartite entanglement in weakly entangled Greenberger-Horne-Zeilinger states, showing that the method applies equally well to less standard states.

12.
Opt Lett ; 46(21): 5352-5355, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724473

RESUMO

The task of wavefront sensing is to measure the phase of the optical field. Here, we demonstrate that the widely used Shack-Hartmann wavefront sensor detects the weak value of transverse momentum, usually achieved by the method of quantum weak measurement. We extend its input states to partially coherent states and compare it with the weak measurement wavefront sensor, which has a higher spatial resolution but a smaller dynamic range. Since weak values are commonly used in investigating fundamental quantum physics and quantum metrology, our work would find essential applications in these fields.

13.
Phys Rev Lett ; 126(17): 170505, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33988432

RESUMO

Masking of quantum information spreads it over nonlocal correlations and hides it from the subsystems. It is known that no operation can simultaneously mask all pure states [Phys. Rev. Lett. 120, 230501 (2018)PRLTAO0031-900710.1103/PhysRevLett.120.230501], so in what sense is quantum information masking useful? Here, we extend the definition of quantum information masking to general mixed states, and show that the resource of maskable quantum states is far more abundant than the no-go theorem seemingly suggests. Geometrically, the simultaneously maskable states lays on hyperdisks in the state hypersphere, and strictly contains the broadcastable states. We devise a photonic quantum information masking machine using time-correlated photons to experimentally investigate the properties of qubit masking, and demonstrate the transfer of quantum information into bipartite correlations and its faithful retrieval. The versatile masking machine has decent extensibility, and may be applicable to quantum secret sharing and fault-tolerant quantum communication. Our results provide some insights on the comprehension and potential application of quantum information masking.

14.
Nat Mater ; 23(4): 447-448, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570635
15.
Opt Express ; 28(13): 19629-19640, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32672236

RESUMO

In the context of quantum information, major efforts have been made to maximize the mutual information by measuring single copies of signal states. In general, one execution of optimal projective measurement extracts all the accessible mutual information. However, in some scenarios, weak measurements are preferred because of kinds of specific requirements, e.g., to distribute secret keys to multi-observers. In this study, we propose a method to construct optimal weak measurements for multi-party quantum communications. Utilizing the method in [Physical Review Letters 120, 160501 (2018)] to classify the mutual information, the theoretical study shows that by successively performing this optimal weak measurement, all accessible information can be obtained by multiple observers. This conclusion is experimentally verified by a cascaded measurement apparatus that can perform six successive weak measurements on heralded single photons. The experimental results clearly indicate that almost all accessible mutual information is extracted by this sequence of optimal weak measurements; meanwhile, none of the information is destroyed or residual. Thus, this optimal weak measurement is an efficient and reliable tool for performing quantum communication tasks. The consistence between the experimental and theoretical results verifies that the classifying method in [Phys. Rev. Lett.120, 160501 (2018)] can be applied to characterize realistic quantum measurements.

16.
Opt Lett ; 45(23): 6410-6413, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258824

RESUMO

Quantitative control of spatial indistinguishability of identical subsystems as a direct quantum resource at distant sites has not yet been experimentally proven. We design a setup capable of tuning remote spatial indistinguishability of two independent photons by individually adjusting their spatial distribution in two distant regions, leading to polarization entanglement from uncorrelated photons. This is achieved by spatially localized operations and classical communication on photons that meet only at the detectors. The amount of entanglement depends uniquely on the degree of spatial indistinguishability, quantified by an entropic measure I, which enables teleportation with fidelities above the classical threshold. The results open the way to viable indistinguishability-enhanced quantum information processing.

17.
Opt Lett ; 45(7): 1715-1718, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32235981

RESUMO

We experimentally demonstrate an alternative method for measuring nonlocal weak values in linear optics, avoiding the use of second-order interaction. The method is based on the concept of modular values. The paths of two photons, initialized in hyperentangled states, are adopted as the meter with the polarization acting as the system. The modular values are read out through the reconstructed final states of the meter. The weak value of nonlocal observables is given through its connection to the modular value. Comparing the weak values of local and nonlocal observables, we demonstrate the failure of product rules for an entangled system. Our results significantly simplify the task of measuring nonlocal weak values and will play an important role in the application of weak measurement.

18.
Phys Rev Lett ; 125(3): 030506, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32745389

RESUMO

The initialization of a quantum system into a certain state is a crucial aspect of quantum information science. While a variety of measurement strategies have been developed to characterize how well the system is initialized, for a given one, there is in general a trade-off between its efficiency and the accessible information of the quantum state. Conventional quantum state tomography can characterize unknown states while requiring exponentially expensive time-consuming postprocessing. Alternatively, recent theoretical breakthroughs show that quantum state verification provides a technique to quantify the prepared state with significantly fewer samples, especially for multipartite entangled states. In this Letter, we modify the original proposal to be robust to practical imperfections, and experimentally implement a scalable quantum state verification on two-qubit and four-qubit entangled states with nonadaptive local measurements. For all the tested states, the estimated infidelity is inversely proportional to the number of samples, which illustrates the power to characterize a quantum state with a small number of samples. Compared to the globally optimal strategy which requires nonlocal measurements, the efficiency in our experiment is only worse by a small constant factor (<2.5). We compare the performance difference between quantum state verification and quantum state tomography in an experiment to characterize a four-photon Greenberger-Horne-Zeilinger state, and the results indicate the advantage of quantum state verification in both the achieved efficiency and precision.

19.
Phys Rev Lett ; 124(22): 223601, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32567924

RESUMO

Solid-state color centers with manipulatable spin qubits and telecom-ranged fluorescence are ideal platforms for quantum communications and distributed quantum computations. In this work, we coherently control the nitrogen-vacancy (NV) center spins in silicon carbide at room temperature, in which telecom-wavelength emission is detected. We increase the NV concentration sixfold through optimization of implantation conditions. Hence, coherent control of NV center spins is achieved at room temperature, and the coherence time T_{2} can be reached to around 17.1 µs. Furthermore, an investigation of fluorescence properties of single NV centers shows that they are room-temperature photostable single-photon sources at telecom range. Taking advantage of technologically mature materials, the experiment demonstrates that the NV centers in silicon carbide are promising platforms for large-scale integrated quantum photonics and long-distance quantum networks.

20.
Opt Lett ; 44(21): 5254-5257, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31674981

RESUMO

Here we present a design of a traveling-wave optical cavity containing four identical ellipsoidal mirrors arranged in a square. The cavity proves to support more than 21 Laguerre-Gaussian modes simultaneously. There is a polarization splitting in the cavity that can be used for polarization filtering with a high isolation level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA