Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Carcinog ; 62(6): 855-865, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36946578

RESUMO

Long noncoding RNAs (lncRNAs) are critically involved in the occurrence and development of breast cancer (BC). In this study, we performed RNA sequencing, and the results revealed an increase in the expression level of novel lncRNA ENST00000370438 in tissues of patients with BC. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) results showed an increase in lncRNA ENST00000370438 expression level in 23 pairs of BC tissues. Next, we determined the effect of ENST00000370438 on BC cell proliferation, and the results showed that ENST00000370438 promotes cell proliferation in BC. The proteomic analysis showed a decrease in DHCR24 expression level in BC cells transfected with ENST00000370438 small interfering RNA. Western blot and qRT-PCR assay results showed that ENST00000370438 regulated DHCR24 expression. Furthermore, the rescue experiment showed that the interference with ENST00000370438 expression could restore the effect of DHCR24 overexpression on BC cell proliferation, demonstrating that ENST00000370438 could promote cell proliferation by upregulating DHCR24. Finally, we showed that lncRNA ENST000000370438 could promote tumor growth by overexpressing DHCR24 in nude mice. Our results demonstrated that lncRNA ENST00000370438 promotes BC cell proliferation by upregulating DHCR24 expression.


Assuntos
MicroRNAs , Neoplasias , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , RNA Longo não Codificante , Animais , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , MicroRNAs/genética , Neoplasias/genética , Proteínas do Tecido Nervoso/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Proteômica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
2.
Cancer Cell Int ; 23(1): 287, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990331

RESUMO

Osteosarcoma (OS) commonly metastasizes to the lung, yet the underlying molecular mechanisms remain poorly understood. Exosomes play a crucial role in tumor migration, including OS lung migration. However, the underlying mechanism by which exosome-derived long non-coding RNAs (lncRNAs) contribute to lung migration in osteosarcoma (OS) remains unclear. This study presents a newly discovered lncRNA, linc00881, derived from OS exosomes. Our study shows that linc00881 promotes the migration of OS cells to the lung and induces the conversion of normal lung fibroblasts into cancer-associated fibroblasts (CAFs). Subsequently, we found that exosomal linc00881 secreted by OS cells can regulate the expression of matrix metalloproteinase 2 (MMP2) in HFL-1 cells by sponging miR-29c-3p, thereby activating the NF-κB signaling in lung fibroblasts. Finally, we discovered that pro-inflammatory cytokines, namely IL-1ß, IL-6, and IL-8, were secreted through the linc00881/miR-29c-3p/MMP2 axis. These results suggest that OS-derived exosomes can mediate the intercellular crosstalk between OS cells and lung fibroblasts, ultimately impacting OS lung migration. Our study provides a potential target for the treatment of OS lung migration.

3.
Acta Biochim Biophys Sin (Shanghai) ; 55(12): 1892-1901, 2023 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-37997376

RESUMO

Krüppel-like zinc-finger transcription factor 5 (KLF5) is a vital regulator of breast cancer (BC) onset and progression. The mechanism by which KLF5 regulates BC is still not clearly known. In this study, bioinformatics analysis shows that BC-affected individuals with elevated KLF5 expression levels have poor clinical outcomes. We further verify that miR-145-5p regulated KLF5 expression to promote cell apoptosis and inhibit cell proliferation in BC via dual-luciferase reporter assay, western blot analysis, qRT-PCR, CCK-8 assay and cell apoptosis assay. In addition, based on bioinformatics analysis, the binding of ENST00000422059 with miR-145-5p is confirmed by dual-luciferase reporter assay. Subsequently, FISH, western blot analysis, qRT-PCR, CCK-8 and cell apoptosis assays verified that ENST00000422059 increases KLF5 protein expression by sponging miRNA to promote cell proliferation and inhibit cell apoptosis. Finally, ENST00000422059 is found to accelerate tumor progression by regulating the miR-145-5p/KLF5 axis in vivo. In conclusion, this study suggests that ENST00000422059 upregulates KLF5 by sponging miR-145-5p to promote BC progression.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias da Mama/metabolismo , Sincalida/metabolismo , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Apoptose/genética , Proliferação de Células/genética , Luciferases/metabolismo , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
4.
Crit Rev Food Sci Nutr ; 60(15): 2481-2508, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31389257

RESUMO

With a growing demand for safe, nutritious, and fresh-like produce, a number of disinfection technologies have been developed. This review comprehensively examines the working principles and applications of several emerging disinfection technologies. The chemical treatments, including chlorine dioxide, ozone, electrolyzed water, essential oils, high-pressure carbon dioxide, and organic acids, have been improved as alternatives to traditional disinfection methods to meet current safety standards. Non-thermal physical treatments, such as UV-light, pulsed light, ionizing radiation, high hydrostatic pressure, cold plasma, and high-intensity ultrasound, have shown significant advantages in improving microbial safety and maintaining the desirable quality of produce. However, using these disinfection technologies alone may not meet the requirement of food safety and high product quality. Several hurdle technologies have been developed, which achieved synergistic effects to maximize lethality against microorganisms and minimize deterioration of produce quality. The review also identifies further research opportunities for the cost-effective commercialization of these technologies.


Assuntos
Desinfecção/métodos , Microbiologia de Alimentos , Inocuidade dos Alimentos/métodos , Frutas , Verduras , Frutas/microbiologia , Humanos , Controle de Qualidade , Verduras/microbiologia
5.
Med Sci Monit ; 26: e922090, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32489187

RESUMO

BACKGROUND Nephrotic syndrome (NS) is a common chronic kidney disease in children characterized by a group of clinical symptoms such as massive proteinuria, hypoproteinemia, high edema, and hyperlipidemia. Despite the tremendous efforts already made, the diagnosis for nephrotic syndrome still remains poor in children. MATERIAL AND METHODS The blood samples from 30 healthy children and 30 children with nephrotic syndrome were collected. The expression of H19 and ADCK4 (which are genes recently identified to play key roles in the development of nephrotic syndrome) in peripheral blood mononuclear cells (PBMCs), were detected by real-time quantitative polymerase chain reaction (RT-qPCR). The expression of ADCK4 was also detected by RT-qPCR or western blot when H19 was overexpressed or knocked down in human primary renal podocytes. Luciferase activity analysis was performed to measure whether H19 could regulate the promoter activity of ADCK4. RNA pull-down. In addition, mass spectrometry assay was used to find the transcription factor which could bind with H19, and RNA immunoprecipitation assay (RIPA) analysis was done to further confirm the interaction between H19 and candidate transcription factor. RESULTS Long noncoding RNA H19 (lncRNA H19) expression was downregulated in PBMCs of children with nephrotic syndrome. ADCK4 was also downregulated. In human primary renal podocytes, overexpression of H19 promoted the expression of ADCK4, while H19 knockdown inhibited it. Furthermore, our study demonstrated that H19 could regulate the promoter activity of ADCK4. Using RNA pull-down and mass spectrometry technology, we found the transcription factor-THAP1 could bind with H19, and the interaction between them was further confirmed by RIPA analysis. CONCLUSIONS H19 expression in blood samples may be a novel marker of the diagnosis of nephrotic syndrome in children.


Assuntos
Síndrome Nefrótica/genética , Proteínas Quinases/metabolismo , RNA Longo não Codificante/genética , Proteínas Reguladoras de Apoptose/metabolismo , Criança , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Rim/metabolismo , Rim/patologia , Masculino , Espectrometria de Massas/métodos , Mutação , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/fisiopatologia , Podócitos/metabolismo , Proteínas Quinases/genética , RNA Longo não Codificante/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais
6.
Mediators Inflamm ; 2018: 7304096, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30158835

RESUMO

BACKGROUND: Inflammation is one of the most important pathogeneses of thromboangiitis obliterans (TAO). The NLRP3 inflammasome plays a vital role in the body's immune response and disease development. It can be activated by numerous types of pathogens or danger signals. As the core of the inflammatory response, the NLRP3 inflammasome may provide a new target for the treatment of various inflammatory diseases. Levistilide A (LA) is a phthalide dimer isolated from umbelliferous plants. Its pharmacological effect is largely unknown. This study revealed the effects of LA on endothelial cell activation, NLRP3, IL-1ß, TNF-α, IL-32, and CCL-2, VCAM-1, MCP-1, and the spleen tyrosine kinase (Syk)--p38/JNK signaling axis and its effect on vasculitis in rats. RESULTS: LA inhibited endothelial activation and the expression of IL-1ß, TNF-α, IL-32, CCL-2, VCAM-1, and MCP-1. LA directly obstructed Syk phosphorylation and activity in a dose-dependent manner, inhibited the activity of p38 and JNK, and reduced the expression of NLRP3 in human umbilical vein endothelial cells and vascular tissue of rats with vasculitis. CONCLUSION: LA suppressed NLRP3 gene expression by blocking the Syk--p38/JNK pathway and reduced damage to the rats' limbs in the thromboangiitis obliterans model.


Assuntos
Compostos Heterocíclicos de Anel em Ponte/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Quinase Syk/metabolismo , Tromboangiite Obliterante/tratamento farmacológico , Tromboangiite Obliterante/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Células Endoteliais da Veia Umbilical Humana , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Ratos , Ratos Wistar
7.
Mediators Inflamm ; 2017: 7848591, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28490839

RESUMO

Whether it is caused by viruses and bacteria infection, or low-grade chronic inflammation of atherosclerosis and cellular senescence, the transcription factor (TF) NF-κB plays a central role in the inducible expression of inflammatory genes. Accumulated evidence has indicated that the chromatin environment is the main determinant of TF binding in gene expression regulation, including the stimulus-responsive NF-κB. Dynamic changes in intra- and interchromosomes are the key regulatory mechanisms promoting the binding of TFs. When an inflammatory process is triggered, NF-κB binds to enhancers or superenhancers, triggering the transcription of enhancer RNA (eRNA), driving the chromatin of the NF-κB-binding gene locus to construct transcriptional factories, and forming intra- or interchromosomal contacts. These processes reveal a mechanism in which intrachromosomal contacts appear to be cis-control enhancer-promoter communications, whereas interchromosomal regulatory elements construct trans-form relationships with genes on other chromosomes. This article will review emerging evidence on the genome organization hierarchy underlying the inflammatory response.


Assuntos
Cromatina/metabolismo , Inflamação/metabolismo , Animais , Humanos , Inflamação/imunologia , NF-kappa B/metabolismo , Regiões Promotoras Genéticas/genética
8.
Pharmacology ; 95(3-4): 105-10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25766656

RESUMO

Mitochondrial oxidative stress has been suggested as a major etiological factor in cardiovascular diseases. Manganese superoxide dismutase (MnSOD) is an essential antioxidant mitochondrial enzyme. Although polyphenols can induce MnSOD expression, their mechanism of action remains unclear. We examined the effect of bavachalcone, a bioactive compound isolated from Psoralea corylifolia, on MnSOD protein expression and explored whether this effect is mediated through the AMP-activated protein kinase (AMPK) signaling pathway. Our data showed that bavachalcone enhanced the luciferase activity of the MnSOD promoter and increased MnSOD mRNA and protein expressions. Moreover, bavachalcone suppressed the mitochondrial superoxide production in endothelial cells. Conversely, bavachalcone stimulated liver kinase B1 and AMPKα phosphorylation. mRNA interference by using short hairpin RNA (shRNA) of AMPK inhibited bavachalcone-induced MnSOD expression. A-769662, an AMPK activator, also stimulated AMPK activity and increased MnSOD expression. Furthermore, AMPK knockdown by shRNA-AMPK reversed the inhibitory effects of bavachalcone on mitochondrial superoxide production in endothelial cells. These findings indicate that bavachalcone can protect the endothelial function by increasing AMPK activity and MnSOD expression and reducing mitochondrial oxidative stress. .


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Chalconas/farmacologia , Flavonas/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Células Cultivadas , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Luciferases de Vaga-Lume/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , RNA Interferente Pequeno , Superóxido Dismutase/genética , Superóxidos/metabolismo , Transfecção
9.
Mediators Inflamm ; 2015: 350564, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26538826

RESUMO

Garcinia Linn. plants having rich natural xanthones and benzophenones with anti-inflammatory activity attracted a great deal of attention to discover and develop them as potential drug candidates. Through screening targeting nitric oxide accumulation in stimulated macrophage, we found that 1,3,5,7-tetrahydroxy-8-isoprenylxanthone (TIE) had potential anti-inflammatory effect. To understand how TIE elicits its anti-inflammatory activity, we uncovered that it significantly inhibits the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS/IFNγ-stimulated RAW264.7 cells. In further study, we showed that TIE reduced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), two key molecules responsible for the production of NO and PGE2 during inflammation progress. Additionally, TIE also suppressed the expression of inflammatory cytokines IL-6, IL-12, and TNF-α. TIE-led suppression in iNOS, COX-2, and cytokines production were probably the consequence of TIE's capability to block ERK and p38MAPK signaling pathway. Moreover, TIE blocked activation of nuclear factor-kappa B (NF-κB) as well as NF-κB regulation of miR155 expression. Our study suggests that TIE may represent as a potential therapeutic agent for the treatment of inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Garcinia/química , Macrófagos/efeitos dos fármacos , Extratos Vegetais/química , Xantonas/farmacologia , Animais , Sobrevivência Celular , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Inflamação , Interleucina-6/metabolismo , Lipopolissacarídeos/química , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/química , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Transdução de Sinais , Xantonas/isolamento & purificação , Xantonas/uso terapêutico
10.
Int J Mol Sci ; 16(9): 22473-84, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26393572

RESUMO

Ophiopogon japonicus is a traditional Chinese medicine that might be effective for treating type 2 diabetes. Recent research confirmed that MDG-1, a polysaccharide from O. japonicas, activates the PI3K/Akt signaling pathway and improves insulin sensitivity in a diabetic KKAy mouse model, but little is known about its effects on diabetic nephropathy. In this study, KKAy mice were orally administered distilled water (control group), MDG-1, or rosiglitazone for 12 weeks. Blood glucose levels were tested every two weeks for the fed mice. At 6 and 12 weeks, blood samples were collected for biochemical examination. At the end of the experiment, all kidney tissues were collected for histological examination and western blot analysis. Results show that MDG-1 (300 mg/kg) significantly decreased the levels of blood glucose, triglycerides, blood urine nitrogen and albumin, and significantly inhibited the expression of transforming growth factor-beta 1 and connective tissue growth factor. Moreover, MDG-1 could alleviate glomerular mesangial expansion and tubulointerstitial fibrosis in the diabetic mice, as confirmed by histopathological examination. These data indicated that MDG-1 ameliorates renal disease in diabetic mice by reducing hyperglycemia, hyperinsulinemia, and hyperlipidemia, and by inhibiting intracellular signaling pathways.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Hipoglicemiantes/administração & dosagem , Polissacarídeos/administração & dosagem , Administração Oral , Animais , Glicemia/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Esquema de Medicação , Regulação da Expressão Gênica/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Camundongos , Polissacarídeos/farmacologia , Rosiglitazona , Tiazolidinedionas/administração & dosagem , Tiazolidinedionas/uso terapêutico , Fator de Crescimento Transformador beta1/metabolismo , Triglicerídeos/metabolismo
11.
Molecules ; 20(11): 19823-36, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26540037

RESUMO

We have previously shown that scropolioside B has higher anti-inflammatory activity than catalpol does after the inhibition of nuclear factor (NF)-κB activity and IL-1ß expression, maturation, and secretion. Various scropoliosides were extracted, isolated, and purified from Scrophularia dentata Royle ex Benth. We then compared their anti-inflammatory activities against LPS-induced NF-κB activity, cytokines mRNA expression, IL-1ß secretion, and cyclooxygenase-2 activity. The inhibitory effects of the scropoliosides varied depending on whether the 6-O-substituted cinnamyl moiety was linked to C'' 2-OH, C''3-OH, or C''4-OH, and on the number of moieties linked, which is closely related to the enhancement of antiinflammatory activity. Among these compounds, scropolioside B had the strongest antiinflammatory effects.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Glucosídeos Iridoides/química , Glucosídeos Iridoides/farmacologia , Ácido Araquidônico/metabolismo , Citocinas/genética , Citocinas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Expressão Gênica , Células HEK293 , Humanos , NF-kappa B/metabolismo , Ressonância Magnética Nuclear Biomolecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Relação Estrutura-Atividade
12.
Mediators Inflamm ; 2014: 819053, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25386048

RESUMO

Chronic inflammation is associated with various chronic illnesses including immunity disorders, cancer, neurodegeneration, and vascular diseases. Iridoids are compounds with anti-inflammatory properties. However their anti-inflammatory mechanism remains unclear. Here, we report that scropolioside B, isolated from a Tibetan medicine (Scrophularia dentata Royle ex Benth.), blocked expressions of TNF, IL-1, and IL-32 through NF-κB pathway. Scropolioside B inhibited NF-κB activity in a dose-dependent manner with IC50 values of 1.02 µmol/L. However, catalpol, similar to scropolioside B, was not effective in inhibiting NF-κB activity. Interestingly, scropolioside B and catalpol decreased the expression of NLRP3 and cardiolipin synthetase at both the mRNA and protein level. Our results showed that scropolioside B is superior in inhibiting the expression, maturation, and secretion of IL-1ß compared to catalpol. These observations provide further understanding of the anti-inflammatory effects of iridoids and highlight scropolioside B as a potential drug for the treatment of rheumatoid arthritis and atherosclerosis.


Assuntos
Anti-Inflamatórios/farmacologia , Citocinas/antagonistas & inibidores , Inflamassomos/efeitos dos fármacos , Interleucina-1beta/antagonistas & inibidores , Glucosídeos Iridoides/farmacologia , Anti-Inflamatórios/isolamento & purificação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Glucosídeos Iridoides/isolamento & purificação , Medicina Tradicional Chinesa , Proteínas de Membrana/genética , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Scrophularia/química , Transdução de Sinais/efeitos dos fármacos
13.
Eur J Pharmacol ; 972: 176557, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574839

RESUMO

Cerebral ischemia-reperfusion injury (CIRI) can induce massive death of ischemic penumbra neurons via oxygen burst, exacerbating brain damage. Parthanatos is a form of caspase-independent cell death involving excessive activation of PARP-1, closely associated with intense oxidative stress following CIRI. 4'-O-methylbavachalcone (MeBavaC), an isoprenylated chalcone component in Fructus Psoraleae, has potential neuroprotective effects. This study primarily investigates whether MeBavaC can act on SIRT3 to alleviate parthanatos of ischemic penumbra neurons induced by CIRI. MeBavaC was oral gavaged to the middle cerebral artery occlusion-reperfusion (MCAO/R) rats after occlusion. The effects of MeBavaC on cerebral injury were detected by the neurological deficit score and cerebral infarct volume. In vitro, PC-12 cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R), and assessed cell viability and cell injury. Also, the levels of ROS, mitochondrial membrane potential (MMP), and intracellular Ca2+ levels were detected to reflect mitochondrial function. We conducted western blotting analyses of proteins involved in parthanatos and related signaling pathways. Finally, the exact mechanism between the neuroprotection of MeBavaC and parthanatos was explored. Our results indicate that MeBavaC reduces the cerebral infarct volume and neurological deficit scores in MCAO/R rats, and inhibits the decreased viability of PC-12 cells induced by OGD/R. MeBavaC also downregulates the expression of parthanatos-related death proteins PARP-1, PAR, and AIF. However, this inhibitory effect is weakened after the use of a SIRT3 inhibitor. In conclusion, the protective effect of MeBavaC against CIRI may be achieved by inhibiting parthanatos of ischemic penumbra neurons through the SIRT3-PARP-1 axis.


Assuntos
Chalconas , Fármacos Neuroprotetores , Parthanatos , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Sirtuínas , Animais , Ratos , Masculino , Chalconas/farmacologia , Chalconas/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/metabolismo , Parthanatos/efeitos dos fármacos , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/patologia , AVC Isquêmico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células PC12 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/metabolismo , Cálcio/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/complicações , Sobrevivência Celular/efeitos dos fármacos , Sirtuína 3/metabolismo , Sirtuína 3/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
14.
Eur J Med Res ; 29(1): 34, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184662

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is a common autoimmune disease that impacts various organs. Lupus nephritis (LN) significantly contributes to death in children with SLE. Toll-like receptor (TLR) adaptor interacting with SLC15A4 on the lysosome (TASL) acts as an innate immune adaptor for TLR and is implicated in the pathogenesis of SLE. A transcription factor known as signal transducer and activator of transcription 3 (STAT3), which is known to be linked to autoimmune diseases, is also involved in the development of SLE. METHODS: Bioinformatics and real-time quantitative PCR (qRT-PCR) was used to detect the expression of STAT3 and TASL in peripheral blood of SLE patients and their correlation. Bioinformatics analysis, qRT-PCR, luciferase assay and chromatin immunoprecipitation (ChIP) were used to verify the regulation of transcription factor STAT3 on TASL. The expression levels of STAT3, TASL and apoptosis-related genes in LPS-induced HK2 cells were detected by qRT-PCR and Western blot. TUNEL staining were used to detect the apoptosis of HK2 cells after LPS stimulation. ELISA and qRT-PCR were used to detect the levels of inflammatory cytokines in the cell culture supernatant. TASL knockdown in HK2 cells was used to detect the changes in apoptosis-related genes and inflammatory factors. The expression level of TASL in LPS-stimulated HK2 cells and its effect on cell apoptosis and inflammatory factors were observed by knocking down and overexpressing STAT3, respectively. It was also verified in a rescue experiment. RESULTS: The expressions of STAT3 and TASL were higher in SLE than in healthy children, and the expression of STAT3 was positively correlated with TASL. Transcription factor STAT3 can directly and positively regulate the expression of TASL through the promoter region binding site. The expression of STAT3, TASL and inflammatory cytokines was elevated, and the change of apoptosis was up-regulated in LPS-stimulated HK2 cells. Inhibition of STAT3 alleviates LPS-stimulated apoptosis and inflammatory response in HK2 cells through transcriptional regulation of TASL. CONCLUSIONS: These findings provide new insights into the transcriptional regulation of TASL and provide new evidence of a direct regulatory relationship between signaling nodes in the lupus signaling network.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Criança , Humanos , Lipopolissacarídeos/farmacologia , Fator de Transcrição STAT3/genética , Inflamação/genética , Apoptose/genética , Nefrite Lúpica/genética , Citocinas
15.
Int Immunopharmacol ; 127: 111399, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38142641

RESUMO

Alcoholic liver disease (ALD), which is induced by chronic heavy alcohol consumption, accompanies complicated pathological mechanisms, including oxidative stress, inflammation, cell death, epigenetic changes and acetaldehyde-mediated toxicity. Hydrogen (H2) is the lightest gas with multiple biological effects such as high selective anti-oxidation, anti-inflammation and anti-apoptosis. However, the dose effects and innate immune mechanisms of intraperitoneal injection of H2 on ALD are limited. Here, we used acute ethanol-induced hepatotoxicity mice models to estimate the actions of intraperitoneal injection of H2 on ALD. The effects of H2 on acute ethanol-induced liver damage were examined by hepatic oil red O staining, quantitative PCR (qPCR) for lipid metabolic genes, hepatic triglyceride (TG) and serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Hepatic mitochondrial superoxide (MitoSOX), 3-nitrotyrosine (3-NT), malondialdehyde (MDA), and glutathione (GSH) levels were examined to evaluate oxidative stress. Immunoblot, and immunofluorescence staining were used to further confirm the innate immune molecular targets of H2. Our results showed that intraperitoneal injection of H2 improved acute ethanol-induced liver injury in mice in a dose dependent manner, as indicated by decreasing serum ALT and AST levels, hepatic TG levels, and increasing lipid export genes (Mttp and Apob) mRNA levels and reducing fatty acid uptake gene (CD36) mRNA levels. Mechanistically, H2 inhibited hepatic oxidative stress as indicated by reducing reactive oxygen species (ROS), 3-NT, and MDA levels in the liver, while increasing hepatic GSH levels; inhibited the overactived TLR4/9-NF-κB-TNF-α/IL-1ß/IL-18 innate immune signaling; suppressed the canonical Caspase-1-GSDMD pyroptosis signaling, and the non-canonical pyroptosis signaling, such as Caspase-11-GSDMD, Caspase-8-GSDMD and Caspase-3-GSDME signaling. Therefore, our study highlights that intraperitoneal injection of H2 may represent a novel therapeutic and safe strategy for ALD via modulating oxidative stress, innate immunity and pyroptosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hepatopatias Alcoólicas , Camundongos , Animais , Etanol/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Piroptose , Fígado/patologia , Hepatopatias Alcoólicas/patologia , Estresse Oxidativo , Glutationa/metabolismo , Triglicerídeos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Imunidade Inata , RNA Mensageiro/metabolismo , Caspases/metabolismo
16.
PLoS One ; 18(6): e0286729, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37307260

RESUMO

Media companies in various countries are transforming and upgrading to improve their competitiveness in the digital economy. However, existing research only focuses on the issue of how media companies transform while ignoring whether internal governance mechanisms such as compensation incentives can promote corporate value during the transformation process. According to the principal-agent theory, we examined the incentive effects of the executive compensation system in terms of monetary compensation, equity compensation, and perks in a sample of Chinese media companies in the process of transformation and upgrading. The results have revealed that monetary compensation does not have a significant incentive effect, and equity compensation and perks have an incentive effect when they are in the suitable range. Based on the results, we proposed policy recommendations from three aspects: monetary compensation, equity compensation, and perks. This study complements the research content on the executive compensation system in media enterprises' transformation and upgrading. It can provide a reference for setting the administrative compensation system for media companies in China and other emerging economies.

17.
Exp Ther Med ; 25(4): 172, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37006873

RESUMO

Pathological cardiac hypertrophy is an independent risk factor for complications such as arrhythmia, myocardial infarction, sudden mortality and heart failure. Succinate, an intermediate product of the Krebs cycle, is released into the bloodstream by cells; its levels increase with exacerbations of hypertension, myocardial and other tissue damage and metabolic disease. Succinate may also be involved in several metabolic pathways and mediates numerous pathological effects through its receptor, succinate receptor 1 (SUCNR1; previously known as GPR91). Succinate-induced activation of SUCNR1 has been reported to be related to cardiac hypertrophy, making SUCNR1 a potential target for treating cardiac hypertrophy. Traditional Chinese medicine (TCM) and its active ingredients have served important roles in improving cardiac functions and treating heart failure. The present study investigated whether 4'-O-methylbavachadone (MeBavaC), an active ingredient of the herbal remedy Fructus Psoraleae, which is often used in TCM and has protective effect on myocardial injury and hypertrophy induced by adriamycin, ischemia-reperfusion and sepsis, could ameliorate succinate-induced cardiomyocyte hypertrophy by inhibiting the NFATc4 pathway. Using immunofluorescence staining, reverse transcription-quantitative PCR, western blotting and molecular docking analysis, it was determined that succinate activated the calcineurin/NFATc4 and ERK1/2 pathways to promote cardiomyocyte hypertrophy. MeBavaC inhibited cardiomyocyte hypertrophy, nuclear translocation of NFATc4 and ERK1/2 signaling activation in succinate-induced cardiomyocytes. Molecular docking analysis revealed that MeBavaC interacts with SUCNR1 to form a relatively stable binding and inhibits the succinate-SUCNR1 interaction. The results demonstrated that MeBavaC suppressed cardiomyocyte hypertrophy by blocking SUCNR1 receptor activity and inhibiting NFATc4 and ERK1/2 signaling, which will contribute to the preclinical development of this compound.

18.
Heliyon ; 9(10): e21093, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37928394

RESUMO

Ferroptosis has emerged as a significant factor in the development of bronchopulmonary dysplasia (BPD). Nevertheless, our understanding of the potential involvement of ferroptosis-related genes (FRGs) in BPD remains incomplete. In this study, we leveraged the Gene Expression Omnibus (GEO) database to investigate this aspect. We identified 20 differentially expressed FRGs that are associated with BPD, shedding light on their potential role in the condition.LASSO along with SVM-RFE algorithms found that 12 genes: MEG3, ACSL1, DPP4, GALNT14, MAPK14, CD82, SMPD1, NR1D1, PARP3, ACVR1B, H19, and SLC7A11 were closely related to ferroptosis modulation and immunological response. These genes were used to create a nomogram with good predictive power and were found to be involved in BPD-linked pathways. In addition, the marker genes-based prediction model performed well in external validation data sets. The study also showed a significance between BPD and control samples in terms of immune cell infiltration. These findings may help improve our understanding of FRGs in BPD and lead to the development of more effective immunotherapies.

19.
Aging (Albany NY) ; 15(9): 3738-3758, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37166418

RESUMO

Fibroblast activation protein-alpha (FAP) is a transmembrane serine protease involving in tissue remodeling. Previous studies report that FAP is highly expressed in certain tumors and participated in oncogenesis. However, there is still lack of systematic and in-depth analysis of FAP based on clinical big data. Here, we comprehensively map the FAP expression profile, prognostic outcome, genetic alteration, immune infiltration across over 30 types of human cancers through multiple datasets including TCGA, CPTAC, and cBioPortal. We find that FAP is up-regulated in most cancer types, and increased FAP expression is associated with advanced pathological stages or poor prognosis in several cancers. Furthermore, FAP is significantly correlated with the infiltration of cancer-associated fibroblasts, macrophages, myeloid dendritic cells, as well as endothelia cells. Immunosuppressive checkpoint proteins or cytokines expression, microsatellite instability and tumor mutational burden analysis also indicate the regulation role of FAP in tumor progression. Gene enrichment analysis demonstrates that ECM-receptor interaction as well as extracellular matrix and structure process are linked to the potential mechanism of FAP in tumor pathogenesis. The ceRNA network is also constructed and identified the involvement of LINC00707/hsa-miR-30e-5p/FAP, LINC02535/hsa-miR-30e-5p/FAP, LINC02535/hsa-miR-30d-5p/FAP, as well as AC026356.1/hsa-miR-30d-5p/FAP axis in tumor progression. In conclusion, our study offers new insights into the oncogenic and immunological role of FAP from a pan-cancer perspective, providing new clues for developing novel targeted anti-tumor strategies.


Assuntos
Proteínas de Membrana , MicroRNAs , Neoplasias , Serina Endopeptidases , Humanos , Proteínas de Membrana/genética , Neoplasias/genética , Serina Endopeptidases/genética
20.
Cancer Commun (Lond) ; 43(5): 582-612, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37005481

RESUMO

BACKGROUND: Nuclear Yes1-associated transcriptional regulator (YAP1) promotes tumor progression. However, the function of cytoplasmic YAP1 in breast cancer cells and its impact on the survival of breast cancer patients remain unclear. Our research aimed to explore the biological function of cytoplasmic YAP1 in breast cancer cells and the possibility of cytoplasmic YAP1 as a predictive marker of breast cancer survival. METHODS: We constructed cell mutant models, including NLS-YAP15SA (nuclear localized), YAP1S94A (incapable of binding to the TEA domain transcription factor family) and YAP1S127D (cytoplasmic localized), and used Cell Counting Kit-8 (CCK-8) assays, 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays, and Western blotting (WB) analysis to detect cell proliferation and apoptosis. The specific mechanism of cytoplasmic YAP1-mediated endosomal sorting complexes required for transport III (ESCRT-III) assembly was studied by co-immunoprecipitation, immunofluorescence staining, and WB analysis. Epigallocatechin gallate (EGCG) was used to simulate YAP1 retention in the cytoplasm in in vitro and in vivo experiments to study the function of cytoplasmic YAP1. YAP1 binding to NEDD4-like E3 ubiquitin protein ligase (NEDD4L) was identified using mass spectrometry and was verified in vitro. Breast tissue microarrays were used to analyze the relationship between cytoplasmic YAP1 expression and the survival of breast cancer patients. RESULTS: YAP1 was mainly expressed in the cytoplasm in breast cancer cells. Cytoplasmic YAP1 promoted autophagic death of breast cancer cells. Cytoplasmic YAP1 bound to the ESCRT-III complex subunits charged multivesicular body protein 2B (CHMP2B) and vacuolar protein sorting 4 homolog B (VPS4B), promoting assembly of CHMP2B-VPS4B and activating autophagosome formation. EGCG retained YAP1 in the cytoplasm, promoting the assembly of CHMP2B-VPS4B to promote autophagic death of breast cancer cells. YAP1 bound to NEDD4L, and NEDD4L mediated ubiquitination and degradation of YAP1. Breast tissue microarrays revealed that high levels of cytoplasmic YAP1 were beneficial to the survival of breast cancer patients. CONCLUSIONS: Cytoplasmic YAP1 mediated autophagic death of breast cancer cells by promoting assembly of the ESCRT-III complex; furthermore, we established a new breast cancer survival prediction model based on cytoplasmic YAP1 expression.


Assuntos
Morte Celular Autofágica , Neoplasias da Mama , Feminino , Humanos , Citoplasma/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA