RESUMO
PURPOSE OF THE REVIEW: Knee Osteoarthritis (KOA) entails progressive cartilage degradation, reviewed via MRI for morphology, biochemical composition, and microtissue alterations, discussing clinical advantages, limitations, and research applicability. RECENT FINDINGS: Compositional MRI, like T2/T2* mapping, T1rho mapping, gagCEST, dGEMRIC, sodium imaging, diffusion-weighted imaging, and diffusion-tensor imaging, provide insights into cartilage injury in KOA. These methods quantitatively measure collagen, glycosaminoglycans, and water content, revealing important information about biochemical compositional and microstructural alterations. Innovative techniques like hybrid multi-dimensional MRI and diffusion-relaxation correlation spectrum imaging show potential in depicting initial cartilage changes at a sub-voxel level. Integration of automated image analysis tools addressed limitations in manual cartilage segmentation, ensuring robust and reproducible assessments of KOA cartilage. Compositional MRI techniques reveal microstructural changes in cartilage. Multi-dimensional MR imaging assesses biochemical alterations in KOA-afflicted cartilage, aiding early degeneration identification. Integrating artificial intelligence enhances cartilage analysis, optimal diagnostic accuracy for early KOA detection and monitoring.
Assuntos
Cartilagem Articular , Imageamento por Ressonância Magnética , Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/diagnóstico por imagem , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Imageamento por Ressonância Magnética/métodosRESUMO
Pediatric intestinal development is immature, vulnerable to external influences and produce a variety of intestinal diseases. At present, breakthroughs have been made in the treatment of pediatric intestinal diseases, but there are still many challenges, such as toxic side effects, drug resistance, and the lack of more effective treatments and specific drugs. In recent years, dietary polyphenols derived from plants have become a research hotspot in the treatment of pediatric intestinal diseases due to their outstanding pharmacological activities such, as anti-inflammatory, antibacterial, antioxidant and regulation of intestinal flora. This article reviewed the mechanism of action and clinical evidence of dietary polyphenols in the treatment of pediatric intestinal diseases, and discussed the influence of physiological characteristics of children on the efficacy of polyphenols, and finally prospected the new dosage forms of polyphenols in pediatrics.
Assuntos
Enteropatias , Polifenóis , Humanos , Polifenóis/farmacologia , Criança , Enteropatias/tratamento farmacológico , Enteropatias/dietoterapia , Enteropatias/prevenção & controle , Antioxidantes/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , DietaRESUMO
Heterotrophic-sulfur autotrophic denitrification (HAD) has been proposed to be a prospective nitrogen removal process. In this work, the potential of fermentation liquid (FL) from waste-activated sludge (WAS) as the electron donor for denitrification in the HAD system was explored and compared with other conventional carbon sources. Results showed that when FL was used as a carbon source, over 99% of NO3--N was removed and its removal rate exceeded 14.00 mg N/g MLSS/h, which was significantly higher than that of methanol and propionic acid. The produced sulfate was below the limit value and the emission of N2O was low (1.38% of the NO3--N). Microbial community analysis showed that autotrophic denitrifiers were predominated in the HAD system, in which Thiobacillus (16.4%) was the dominant genus. The economic analysis showed the cost of the FL was 0.062 /m3, which was 30% lower than that in the group dosed with methanol. Our results demonstrated the FL was a promising carbon source for the HAD system, which could reduce carbon emission and cost, and offer a creative approach for waste-activated sludge resource reuse.
Assuntos
Carbono , Desnitrificação , Fermentação , Nitrogênio , Esgotos , Carbono/metabolismo , Nitrogênio/metabolismo , Eliminação de Resíduos Líquidos/métodosRESUMO
Purpose: To determine whether multiparametric MRI-based spatial habitats and fractal analysis can help distinguish triple-negative breast cancer (TNBC) from non-TNBC. Method: Multiparametric DWI and DCE-MRI at 3T were obtained from 142 biopsy- and surgery-proven breast cancer with 148 breast lesions (TNBC = 26 and non-TNBC = 122). The contrast-enhancing lesions were divided into 3 spatial habitats based on perfusion and diffusion patterns using K-means clustering. The fractal dimension (FD) of the tumour subregions was calculated. The accuracy of the habitat segmentation was measured using the Dice index. Inter- and intra-reader reliability were evaluated with the intraclass correlation coefficient (ICC). The ability to predict TNBC status was assessed using the receiver operating characteristic curve. Results: The Dice index for the whole tumour was 0.81 for inter-reader and 0.88 for intra-reader reliability. The inter- and intra-reader reliability were excellent for all 3 tumour habitats and fractal features (ICC > 0.9). TNBC had a lower hypervascular cellular habitat and higher FD 1 compared to non-TNBC (all P < .001). Multivariate analysis confirmed that hypervascular cellular habitat (OR = 0.88) and FD 1 (OR = 1.35) were independently associated with TNBC (all P < .001) after adjusting for rim enhancement, axillary lymph nodes status, and histological grade. The diagnostic model combining hypervascular cellular habitat and FD 1 showed excellent discriminatory ability for TNBC, with an AUC of 0.951 and an accuracy of 91.9%. Conclusions: The fraction of hypervascular cellular habitat and its FD may serve as useful imaging biomarkers for predicting TNBC status.
Assuntos
Fractais , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/patologia , Pessoa de Meia-Idade , Adulto , Reprodutibilidade dos Testes , Diagnóstico Diferencial , Idoso , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Mama/diagnóstico por imagem , Mama/patologia , Meios de Contraste , Imageamento por Ressonância Magnética Multiparamétrica/métodosRESUMO
Melon (Cucumis melo L.) is a horticultural crop that is planted globally. Cucumis melo L. cv. Baogua is a typical melon that is suitable for studying fruit development because of its ability to adapt to different climatic conditions. Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs longer than 200 nucleotides, which play important roles in a wide range of biological processes by regulating gene expression. In this study, the transcriptome of the Baogua melon was sequenced at three stages of the process of fruit development (14 days, 21 days, and 28 days) to study the role of lncRNAs in fruit development. The cis and trans lncRNAs were subsequently predicted and identified to determine their target genes. Notably, 1716 high-confidence lncRNAs were obtained in the three groups. A subsequent differential expression analysis of the lncRNAs between the three groups revealed 388 differentially expressed lncRNAs. A total of 11 genes were analyzed further to validate the transcriptome sequencing results. Interestingly, the MELO3C001376.2 and MSTRG.571.2 genes were found to be significantly (P < 0.05) downregulated in the fruits. This study provides a basis to better understand the functions and regulatory mechanisms of lncRNAs during the development of melon fruit.
RESUMO
A systematic evaluation of the differences in the chemical composition and efficacy of the different forms of Galli Gigerii Endothelium Corneum(GGEC) was conducted based on modern analytical techniques and a functional dyspepsia(FD) rat model, which clarifies the material basis of the digestive efficacy of GGEC. Proteins, enzymes, polysaccharides, amino acids, and flavonoids in GGEC powder and decoction were determined respectively. The total protein of the powder and decoction was 0.06% and 0.65%, respectively, and the pepsin and amylase potency of the powder was 27.03 and 44.05 U·mg~(-1) respectively. The polysaccharide of the decoction was 0.03%, and there was no polysaccharide detected in the powder. The total L-type amino acids in the powder and decoction were 279.81 and 8.27 mg·g~(-1) respectively, and the total flavonoid content was 59.51 µg·g~(-1). Enzymes and flavonoids were not detected in the decoction. The powder significantly reduced nutrient paste viscosity, while the decoction and control group showed no significant reduction in nutrient paste viscosity. FD rat models were prepared by iodoacetamide gavage and irregular diet. The results showed that both powder and decoction significantly increased the gastric emptying effect, small intestinal propulsion rate, digestive enzymes activity, gastrin(GAS), motilin(MTL), ghrelin(GHRL) and reduced vasoactive intestinal peptide(VIP), 3-(2-ammo-nioethyl)-5-hydroxy-1H-indolium maleate(5-HT), and somatostatin(SST) content in rats(P<0.05, P<0.01). Comparison of GGEC decoction and powder administration between groups of the same dosage level showed that gastrointestinal propulsion and serum levels of GAS, GHRL, VIP, and SST in the powder group were significantly superior to those in the decoction and that the gastrointestinal propulsion, as well as serum levels of MTL, GAS, and GHRL were slightly higher than those of the decoction with two times its raw dose, and the serum levels of SST, 5-HT, and VIP in the powder group were slightly lower than those of the decoction with two times its raw dose. In conclusion, both decoction and powder have therapeutic effects on FD, but there is a significant difference between the two effects. Under the same dosage, the digestive efficacy of the powder is significantly better than that of the decoction, and the decoction needs to increase the dosage to compensate for the efficacy. It is hypothesized that the digestive efficacy of the GGEC has a duality, and the digestive active ingredients of the powder may include enzymes and L-type amino acids, while the decoction mainly relies on L-type amino acids to exert its efficacy. This study provides new evidence to investigate the digestive active substances of the GGEC and to improve the effectiveness of the drug in the clinic.
Assuntos
Dispepsia , Ratos Sprague-Dawley , Animais , Ratos , Masculino , Dispepsia/tratamento farmacológico , Dispepsia/fisiopatologia , Dispepsia/metabolismo , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Humanos , Flavonoides/química , Flavonoides/farmacologia , Motilina , Peptídeo Intestinal Vasoativo/metabolismo , Grelina , SomatostatinaRESUMO
The synthesis of hydrogen peroxide through artificial photosynthesis is a green and promising technology with advantages in sustainability, economy and safety. However, superoxide radical (â O2 -), an important intermediate in photocatalytic oxygen reduction to H2O2 production, has strong oxidizing properties that potentially destabilize the catalyst. Therefore, avoiding the accumulation of â O2 - for its rapid conversion to H2O2 is of paramount significance in improving catalyst stability and H2O2 yield. In this work, a strategy was developed to utilize protonated groups for the rapid depletion of converted â O2 -, thereby the efficiency of photocatalytic synthesis of H2O2 from CN was successfully enhanced by 47-fold. The experimental findings demonstrated that polydopamine not only improved carrier separation efficiency, and more importantly, provided the adsorption reduction active site for â O2 - for efficient H2O2 production. This work offers a versatile approach for synthesizing efficient and stable photocatalysts.
RESUMO
One new aromatic polyketide, prealnumycin B (1), and four known aromatic polyketides, K1115A (2), 1,6-dihydroxy-8-propylanthraquinone (DHPA, 3), phaeochromycin B (4), and (R)-7-acetyl-3,6-dihydroxy-8-propyl-3,4dihydronaphthalen-1(2H)-one (5), were isolated from the marine-derived Streptomyces sundarbansensis SCSIO NS01; these compounds represent four sets of aromatic polyketides differing in size and shape. A type II polyketide synthase (PKS) cluster, als, was identified by complete genome sequencing and was shown, by in vivo gene inactivation experiments in the wild-type (WT) NS01 strain and heterologous expression experiments, to encode the biosynthesis of compounds 1-5. Moreover, heterologous expression of the als cluster afforded three additional aromatic polyketides representing two different carbon skeletons, the new phaeochromycin L (6) and two known aromatic polyketides, phaeochromycins D (7) and E (8). These findings expand our knowledge of type II PKS machineries and their versatility in generating structurally diverse aromatic polyketides and highlight the power of type II PKSs in accessing new polyketides via ectopic expression in heterologous hosts.
Assuntos
Carbono , Policetídeos , Inativação Gênica , Família Multigênica , Policetídeo Sintases/genética , EsqueletoRESUMO
Lung adenocarcinoma (LUAD) is a prevalent type of thoracic cancer with a poor prognosis and high mortality rate. However, the exact pathogenesis of this cancer is still not fully understood. One potential factor that can contribute to the development of lung adenocarcinoma is DNA methylation, which can cause changes in chromosome structure and potentially lead to the formation of tumors. The baculoviral IAP repeat containing the 5 (BIRC5) gene encodes the Survivin protein, which is a multifunctional gene involved in cell proliferation, migration, and invasion of tumor cells. This gene is elevated in various solid tumors, but its specific role and mechanism in lung adenocarcinoma are not well-known. To identify the potential biomarkers associated with lung adenocarcinoma, we screened the methylation-regulated differentially expressed genes (MeDEGs) of LUAD via bioinformatics analysis. Gene ontology (GO) process and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied to investigate the biological function and pathway of MeDEGs. A protein-protein interaction (PPI) network was employed to explore the key module and screen hub genes. We screened out eight hub genes whose products are aberrantly expressed, and whose DNA methylation modification level is significantly changed in lung adenocarcinoma. BIRC5 is a bona fide marker which was remarkably up-regulated in tumor tissues. Flow cytometry analysis, lactate dehydrogenase release (LDH) assay and Micro-PET imaging were performed in A549 cells and a mouse xenograft tumor to explore the function of BIRC5 in cell death of lung adenocarcinoma. We found that BIRC5 was up-regulated and related to a high mortality rate in lung adenocarcinoma patients. Mechanically, the knockdown of BIRC5 inhibited the proliferation of A549 cells and induced pyroptosis via caspase3/GSDME signaling. Our findings have unraveled that BIRC5 holds promise as a novel biomarker and therapeutic target for lung adenocarcinoma. Additionally, we have discovered a novel pathway in which BIRC5 inhibition can induce pyroptosis through the caspase3-GSDME pathway in lung adenocarcinoma cells.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Piroptose , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Mapas de Interação de Proteínas/genética , Transdução de Sinais , Neoplasias Pulmonares/metabolismo , Regulação Neoplásica da Expressão Gênica , Survivina/genética , Survivina/metabolismoRESUMO
The spread of antibiotic resistance genes (ARGs) is an emerging global health concern, and wastewater treatment plants (WWTPs), as an essential carrier for the occurrence and transmission of ARGs, deserves more attention. Based on the Illumina NovaSeq high-throughput sequencing platform, this study conducted a metagenomic analysis of 18 samples from three full-scale WWTPs to explore the fate of ARGs in the whole process (influent, biochemical treatment, advanced treatment, and effluent) of wastewater treatment. Total 70 ARG subtypes were detected, among which multidrug, aminoglycoside, tetracycline, and macrolide ARGs were most abundant. The different treatment processes used for three WWTPs were capable of reducing ARG diversity, but did not significantly reduce ARG abundance. Compared to that by denitrification filters, the membrane bioreactor (MBR) process was advantageous in controlling the prevalence of multidrug ARGs in WWTPs. Linear discriminant analysis Effect Size (LEfSe) suggested g_Nitrospira, g_Curvibacter, and g_Mycobacterium as the key bacteria responsible for differential ARG prevalence among different WWTPs. Meanwhile, adeF, sul1, and mtrA were the persistent antibiotic resistance genes (PARGs) and played dominant roles in the prevalence of ARGs. Proteobacteria and Actinobacteria were the host bacteria of majority ARGs in WWTPs, while Pseudomonas and Nitrospira were the most crucial host bacteria influencing the dissemination of critical ARGs (e.g., adeF). In addition, microbial richness was determined to be the decisive factor affecting the diversity and abundance of ARGs in wastewater treatment processes. Overall, regulating the abundance of microorganisms and key host bacteria by selecting processes with microbial interception, such as MBR process, may be beneficial to control the prevalence of ARGs in WWTPs.
Assuntos
Antibacterianos , Purificação da Água , Antibacterianos/farmacologia , Águas Residuárias , Genes Bacterianos , Prevalência , Bactérias/genética , Resistência Microbiana a Medicamentos/genéticaRESUMO
Combretastatin A-4 (CA-4) is a potent tubulin polymerisation inhibitor. However, the clinical application of CA-4 is limited owing to its low aqueous solubility and the easy conversion of the olefin double bond from the more active cis- to the less active trans-configuration. Several structural modifications were investigated to improve the solubility of CA-4 derivatives. Among the compounds we synthesized, the kinetic solubility assay revealed that the solubility of compounds containing a piperazine ring increased the most, and the solubility of compounds 12a1, 12a2, 15 and 18 was increased 230-2494 times compared with that of the control compound (Z)-3-(4-aminophenyl)-2-(3,4,5-trimethoxyphenyl)acrylonitrile (9a). In addition, these synthesised stilbene nitriles had high anticancer cell (AGS, BEL-7402, MCF-7, and HCT-116) selectivity over L-02 and MCF-10A normal cells while maintaining micromolar activity against cancer cells. The most cytotoxic compound is 9a, and the IC50 value is 20 nM against HCT-116 cancer cells. Preliminary studies indicated that compound 12a1 had excellent plasma stability and moderate binding to rat plasma proteins, suggesting it is a promising lead compound for the development of an anticancer agent.
Assuntos
Antineoplásicos , Estilbenos , Antineoplásicos/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Solubilidade , Estilbenos/química , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia , Humanos , Linhagem Celular TumoralRESUMO
Inner coastal wetland ecosystems are generally eutrophic and are often exposed to both salinity stress and Escherichia coli pollution. However, the effects of these stressors on nutrient-cycling and microbial communities are under-researched. Here, we established a vegetated wetland ecosystem in a saline environment to understand the effects of E. coli pollution on nutrient removal and benthic microorganisms. The results show that E. coli significantly inhibited nutrient removal, especially total nitrogen (TN) and ammonium (78.89-84.98 and 3.45-44.65% were removed from the non-E. coli-treated and the E. coli-treated water, respectively). Compared with non-vegetated systems, archaeal community variations at both compositional and phylogenetic levels were weakened in vegetated systems (p < 0.05). Among all the environmental factors, the ratios of PO43--P to total phosphorus and NO3--N to TN contributed the most to archaeal and bacterial community structural variations, respectively. E. coli pollution affected archaeal community succession more than bacteria (p < 0.05). E. coli also weakened the trophic transferring efficiencies between Cyanobacteria and Myxobacteria (p < 0.05). Metabolically, E. coli inhibited bacterial genetic metabolic pathways but made human infection more likely (p < 0.05). Our findings provide new insights into aquatic ecological conservation and environmental management.
Assuntos
Ecossistema , Áreas Alagadas , Humanos , Salinidade , Filogenia , Bactérias/genética , Archaea/genética , Escherichia coli/genética , Nutrientes , NitrogênioRESUMO
Penis cavernosa fibrosis is an important cause of refractory erectile dysfunction.Its exact pathogenesis remains incompletely elucidated, and conventional treatment is not effective, seriously affecting the quality of life, physical and mental health of men. With the deepening of research, the progress of two-dimensional shear wave elastography (2D-SWE) and molecular imaging provides the possibility for the early diagnosis, grading and staging of cavernous fibrosis. Studies on stem cell therapy, energy-based treatments, targeted therapy, and traditional Chinese medicine show promising applications in the anti-penile cavernous fibrosis. This article reviews the research progress in the diagnosis and treatment of penile cavernosis fibrosis.
Assuntos
Técnicas de Imagem por Elasticidade , Induração Peniana , Masculino , Humanos , Qualidade de Vida , Medicina Tradicional Chinesa , Saúde Mental , Induração Peniana/diagnóstico , Induração Peniana/terapia , PênisRESUMO
Liquid chromatography-mass spectrometry was employed to analyze the chemical components in Curcuma longa tuberous roots(HSYJ), C. longa tuberous roots processed with vinegar(CHSYJ), and rat serum after the administration. The active components of HSYJ and CHSYJ absorbed in serum were identified based on the secondary spectrum of database and literature. The targets of primary dysmenorrhea was screened out from database. The protein-protein interaction network analysis, gene ontology(GO) functional annotation, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were performed for the common targets shared by the drug active components in serum and primary dysmenorrhea, and the component-target-pathway network was constructed. AutoDock was used to conduct molecular docking between the core components and targets. A total of 44 chemical components were identified from HSYJ and CHSYJ, including 18 absorbed in serum. On the basis of network pharmacology, we identified 8 core components(including procurcumenol, isobutyl p-hydroxybenzoate, ferulic acid, and zedoarondiol) and 10 core targets \[including interleukin-6(IL-6), estrogen receptor 1(ESR1), and prostaglandin-endoperoxide synthase 2(PTGS2)\]. The core targets were mainly distributed in the heart, liver, uterus, and smooth muscle. The molecular docking results showed that the core components were well bound to the core targets, indicating that HSYJ and CHSYJ may exert therapeutic effect on primary dysmenorrhea via estrogen, ovarian steroidogenesis, tumor necrosis factor(TNF), hypoxia-inducible factor-1(HIF-1), IL-17 and other signaling pathways. This study clarifies the HSYJ and CHSYJ components absorbed in serum, as well as the corresponding mechanism, providing a reference for further elucidating the therapeutic material basis and clinical application of HSYJ and CHSYJ.
Assuntos
Ácido Acético , Curcuma , Feminino , Humanos , Animais , Ratos , Dismenorreia , Simulação de Acoplamento Molecular , Fator de Necrose Tumoral alfa , Ciclo-Oxigenase 2RESUMO
This study compared the effects of Curcuma longa before and after processing with vinegar on the rat model of dysmenorrhea with the syndrome of liver depression and Qi stagnation to reveal the mechanism of vinegar processing in improving the role of C. longa in soothing liver and relieving pain. The rat model of dysmenorrhea with the syndrome of liver depression and Qi stagnation was established according to the Preparation of the Animal Model of Dysmenorrhea(Draft) and the chronic unpredictable stress me-thod. The changes in the body weight, organ indexes, writhing latency, writhing score, and serum levels of six liver function indicators, sex hormones, pain factors, and blood rheological indicators were measured to evaluate the efficacy of C. longa processed with vinegar or not in treating dysmenorrhea in the rats with syndrome of liver depression and qi stagnation. Compared with the model group, the C. longa group(processed with vinegar or not) showed slow weight loss, increase in writhing latency, and decrease in writhing response(P<0.05). The inhibition rates on writhing in raw C. longa, vinegar-processed C. longa, and positive groups were 33.780%, 64.611%, and 62.466%, respectively. The significantly higher inhibition rate of the vinegar processing group indicated that vinegar-processed C. longa demonstrated more significant therapeutic effect. The vinegar-processed C. longa group showed lower levels of alanine aminotransferase(ALT), alkaline phosphatase(ALP), aspartate aminotransferase(AST), direct bilirubin(DBIL), and total bilirubin(TBIL) and higher level of albumin(ALB)(P<0.05), which indicated that vinegar processing enhanced the therapeutic effect of C. longa on liver injury. The serum levels of estradiol(E_2) and oxytocin(OT) were lower in the vinegar-processed C. longa group(P<0.05), indicating that the vinegar-processed C. longa could regulate the sex hormone levels, reduce the activity of uterine smooth muscle and contraction of uterus, and alleviate the symptoms of dysmenorrhea in rats. Moreover, the vinegar-processed C. longa group showed lower interleukin-6(IL-6) and arginine vasopressin(AVP) levels and higher beta-endorphin(ß-EP) level(P<0.05), which indicated that vinegar-processed C. longa regulated the levels of pain factors to exert the pain-relieving effect. Drug intervention decreased the whole blood viscosity low-cut, medium-cut and high-cut values, plasma viscosity, whole blood reduction viscosity low-cut and high-cut values, erythrocyte cumulative pressure, and equation K value of erythrocyte sedimentation rate(P<0.05), and the vinegar-processed C. longa group outperformed other groups. This result indicated that vinegar processing enhanced the function of C. longa in improving the local blood rheology. C. longa processed with vinegar can enter the liver to relieve the da-mage to the heart, liver, kidney, and uterus, repair the liver function, and recover the sex hormone levels and immune function by regulating the levels of sex hormones and pain factors and improving the blood rheology. It activates the pain-relieving mechanism to relieve the pain, protect the liver, and fight inflammation, which is consistent with the theory that vinegar processing facilitates C. longa entering the liver to sooth liver and relieve pain.
Assuntos
Ácido Acético , Dismenorreia , Humanos , Feminino , Ratos , Animais , Dismenorreia/tratamento farmacológico , Curcuma , Depressão , Qi , Fígado , Hormônios Esteroides Gonadais , BilirrubinaRESUMO
INTRODUCTION: For unilateral papillary thyroid carcinoma (PTC) with contralateral benign nodules, optimal extent of surgery remains controversial. This retrospective cohort study was performed to evaluate the life quality of patients who underwent lobectomy alone and lobectomy with radiofrequency ablation (RFA). METHODS: From October 2014 to October 2018, unilateral PTC patients with contralateral benign nodules reported by fine-needle aspiration cytology who encountered anxiety about contralateral nodule progression underwent lobectomy for PTC and intraoperative RFA for contralateral nodules. The patients who underwent thyroid lobectomy were matched for sex, age at time of surgery, number, size, and location of primary tumors and contralateral nodules to the patients who underwent lobectomy with intraoperative RFA. Three questionnaires were used to evaluate life quality in the two groups. The complications and rate of patients who were not required to receive thyroid-stimulating hormone suppression therapy were recorded. RESULTS: One hundred forty-eight patients with 194 contralateral nodules underwent RFA in the lobectomy plus RFA group, and age- and sex-matched patients underwent thyroid lobectomy alone. The mean volume reduction ratio was 67.7% at 12 mo and 95.2% at 24 mo. After a median follow-up of 4.2 y, nine patients (6.1%) in the lobectomy plus RFA group and 17 (11.5%) in the thyroid lobectomy-alone group underwent completion thyroidectomy (P = 0.100). Patients who underwent lobectomy plus RFA had a better quality of life in terms of anxiety, physiological health, social and family aspects, and psychological and sensory features that were measured cross-sectionally at 6 mo using three instruments. CONCLUSIONS: Intraoperative RFA is effective in terms of volume reduction of contralateral nodules and improved quality of life for unilateral PTC patients with anxiety about disease progression.
Assuntos
Ablação por Cateter , Ablação por Radiofrequência , Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Ansiedade/etiologia , Humanos , Qualidade de Vida , Ablação por Radiofrequência/efeitos adversos , Estudos Retrospectivos , Câncer Papilífero da Tireoide/etiologia , Câncer Papilífero da Tireoide/cirurgia , Neoplasias da Glândula Tireoide/patologia , Nódulo da Glândula Tireoide/cirurgia , Resultado do TratamentoRESUMO
Vicenistatin (1) is a potent polyketide antitumor antibiotic composed of a 20-membered macrolactam core appended to a unique aminosugar, vicenisamine. In this study, vicenistatin was isolated and its biosynthetic gene cluster identified from Monodonata labio-associated Streptomyces parvus SCSIO Mla-L010. A set of five genes, vicC, vicD, vicE, vicF, and vicG, was confirmed to be involved in the biosynthesis of the aminosugar by gene inactivations. VicG was characterized as an N-methyltransferase that catalyzes the methylation of the 4'-amino group in the last step of the aminosugar biosynthetic pathway; the N-demethyl intermediate 4'-N-demethylvicenistatin (2) was isolated from the ΔvicG mutant strain. In addition, vicR1 was characterized as a positive pathway-specific regulatory gene. Notably, N-demethyl compound 2 was found to exert impressive antibacterial activities, with MIC values spanning 0.06-4 µg/mL, against a panel of Gram-positive bacteria including methicillin-resistant Staphylococcus aureus, Gram-negative Helicobacter pylori, and mycobacterium Mycobacterium smegmatis and the fungal pathogen Candida albicans. Compound 2 was also found to display reduced cytotoxicities relative to vicenistatin, especially against noncancerous human cell lines.
Assuntos
Amino Açúcares/metabolismo , Aminoglicosídeos/farmacologia , Gastrópodes/microbiologia , Genes Reguladores , Lactamas/farmacologia , Macrolídeos/farmacologia , Streptomyces/genética , Animais , Vias Biossintéticas/genética , Linhagem Celular Tumoral , Xenoenxertos , Humanos , CamundongosRESUMO
Excess sludge management is a restrictive factor for the development of municipal wastewater treatment plants. The addition of metabolic uncouplers has been proven to be effective in sludge reduction. However, the long-term effect of metabolic uncoupler o-chlorophenol (oCP) on the biological wastewater treatment system operated in anaerobic-oxic mode is still unclear. To this end, two parallel reactors operated in anaerobic-oxic mode with and without 10 mg/L of oCP addition were investigated for 91 days. The results showed that 56.1 ± 2.3% of sludge reduction was achieved in the oCP-added system, and the nitrogen and phosphorus removal ability were negatively affected. Dosing oCP stimulated the formation of microbial products and increased the DNA concentration, but resulted in a decrease in the electronic transport activity of activated sludge. Microbial community analysis further demonstrated that a significant reduction of bacterial richness and diversity occurred after oCP dosing. However, after stopping oCP addition, the pollutant removal ability of activated sludge was gradually increased, but the sludge yield, as well as species richness and diversity, did not recover to the previous level. This study will provide insightful guidance on the long-term application of metabolic uncouplers in the activated sludge system.
Assuntos
Clorofenóis , Microbiota , Anaerobiose , Reatores Biológicos , Nitrogênio , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodosRESUMO
Galli Gigerii Endothelium Corneum(GGEC) is commonly used for the clinical treatment of indigestion, vomiting, diarrhea, and infantile malnutrition with accumulation. In recent decades, omnivorous domestic chickens, the original source of GGEC, has been replaced by broilers, which may lead to significant changes in the quality of the yielding GGEC. Through subjective and objective sensory evaluation, biological evaluation, and chemical analysis, this study compared the odor and quality between GGEC derived from domestic chickens and that from broilers. The odor intensity between them was compared by odor profile analysis and it was found that the fishy odor of GGEC derived from domestic chickens was significantly weaker than that of GGEC from broilers. Headspace-solid phase microextraction-gas chromatography-triple quadrupole tandem mass spectrometry(HS-SPME/GC-QQQ-MS/MS) suggested that the overall odor-causing chemicals were consistent with the fishy odor-causing chemicals. According to the odor activity va-lue and the orthogonal partial least squares discriminant analysis(OPLS-DA) result, dimethyl trisulfide, 2-methoxy-3-isobutylpyrazine, and 2-methylisoborneol were responsible for the fishy odor(OAV≥1) and the content of fishy odor-causing chemicals in GGEC derived from broilers was 1.12-2.13 folds that in GGEC from domestic chickens. The average pepsin potency in GGEC derived from broilers was 15.679 U·mg~(-1), and the corresponding figure for the medicinal from domestic chickens was 26.529 U·mg~(-1). The results of pre-column derivatization reverse-phase high-performance liquid chromatography(RP-HPLC) assay showed that the content of total amino acids and digestion-promoting amino acids in domestic chickens-derived GGEC was 1.12 times and 1.15 times that in GGEC from broilers, and the bitter amino acid content was 1.21 times folds that of the latter. In conclusion, GGEC derived from domestic chickens had weaker fishy odor, stronger enzyme activity, higher content of digestion-promoting amino acids, and stronger bitter taste than GGEC from broilers. This study lays a scientific basis for studying the quality variation of GGEC and provides a method for identifying high-quality GGEC. Therefore, it is of great significance for the development and cultivation of GGEC as both food and medicine and breeding of corresponding varieties.
Assuntos
Odorantes , Compostos Orgânicos Voláteis , Animais , Odorantes/análise , Galinhas , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem , Microextração em Fase Sólida , Aminoácidos , Endotélio/química , Compostos Orgânicos Voláteis/análiseRESUMO
Despite the distinctive characteristics and remarkable efficacy, animal medicine is stenchy, which decreases the comp-liance of patients. At the moment, the research on the method for deodorizing animal medicines lags behind. To be specific, the components related to the odor and the basic properties transformation of the components are unclear and there is a lack of specific deodorizing method. This study aims to clarify the main components related to the stench of animal medicine, such as aldehydes, amines, trimethylamines and sulfur compounds, and their basic properties, and to explore their metabolism and transformation in vivo and in vitro, which is expected to serve as a reference for the research on deodorization of animal medicine and development of new techniques.