Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nano Lett ; 23(1): 298-304, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36541896

RESUMO

Developing a ferroelectric tunnel junction with a robust polarization reversal is essential for errorless data storage, but it remains challenging since the second-order phase transition dominates the reversal and introduces intermediate states. This investigation has proposed a charge-gradient-induced ferroelectricity, which is featured with the first-order phase transition. As an order parameter, a charge-gradient-induced polarization is achieved by modulation of stoichiometric oxygen along the Bi2O2Se/Bi2Se3O9 bilayer during pulsed laser deposition. At room temperature, this polarity points out-of-plane and shows an abrupt reversal in the ferroelectric hysteresis loop. The coercive field only increases by 0.04 V/nm after 300 reversals. Fabricated into the ferroelectric tunnel junction, the bilayer ferroelectric exhibits a comparable electroresistance of 100. The ON/OFF state can be switched repeatedly or after a 360 s retention. Characterizations of scanning capacitance microscopy and the current-voltage relation demonstrate that the ON/OFF switching is based on an injection exchange between the tunnelling and the thermionic emission.

2.
J Am Chem Soc ; 144(39): 17897-17904, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36107198

RESUMO

π-Molecules play important roles in many applications such as organic light-emitting devices, photocatalysis, photovoltaics, biosensors, and medicine. Very often, π-conjugated molecules with high utilization of excited states in the solid state are of great research interest. However, owing to the gap between molecular structure and effective molecular packing, there are very few designs toward π molecules with very high exciton utilization in the solid state. Herein, we report a new π skeleton, folded π, to achieve high exciton utilization in the solid state. Based on a "folded π" formula, 12 compounds with two or three folding π planes were designed and synthesized. We found that folded π molecules tend to form well-aligned 1D molecular columns of patterns ("box", "braid", or "stair") with high packing energy, which is mainly contributed by numerous weak π interactions. As a result of effective suppression of molecular motion, all the compounds show very high exciton utilization in solids.


Assuntos
Estrutura Molecular , Fenômenos Físicos
3.
J Am Chem Soc ; 143(47): 19769-19777, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34788033

RESUMO

Artificial intelligence (AI) based self-learning or self-improving material discovery system will enable next-generation material discovery. Herein, we demonstrate how to combine accurate prediction of material performance via first-principle calculations and Bayesian optimization-based active learning to realize a self-improving discovery system for high-performance photosensitizers (PSs). Through self-improving cycles, such a system can improve the model prediction accuracy (best mean absolute error of 0.090 eV for singlet-triplet spitting) and high-performance PS search ability, realizing efficient discovery of PSs. From a molecular space with more than 7 million molecules, 5357 potential high-performance PSs were discovered. Four PSs were further synthesized to show performance comparable with or superior to commercial ones. This work highlights the potential of active learning in first-principle-based materials design, and the discovered structures could boost the development of photosensitization related applications.

4.
Angew Chem Int Ed Engl ; 60(27): 14945-14953, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33887096

RESUMO

Maximization of phototoxic damage on tumor with minimized side effect on normal tissue is essential for effective anticancer photodynamic therapy (PDT). This requires highly cancer-cell-specific or even cancer-cell-organelle-specific synthesis or delivery of efficient photosensitizers (PSs) in vitro and in vivo, which is difficult to achieve. Herein, we report a strategy of cancer-cell-activated PS synthesis, by which an efficient mitochondria-targeting photosensitizer with aggregation-induced-emission (AIE) feature can be selectively synthesized as an efficient image-guided PDT agent inside cancer cells. MOF-199, a CuII -based metal-organic framework, was selected as an inert carrier to load the PS precursors for efficient delivery and served as a CuI catalyst source for in situ click reaction to form PSs exclusively in cancer cells. The in situ synthesized PS showed mitochondria-targeting capability, allowing potent cancer-cell-specific ablation under light irradiation. The high specificity of PSs produced in cancer cells also makes it safer post-treatment.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Células 3T3 , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cobre/química , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química
5.
Angew Chem Int Ed Engl ; 60(27): 15095-15100, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33835669

RESUMO

Ferroptosis regulates cell death through reactive oxygen species (ROS)-associated lipid peroxide accumulation, which is expected to affect the structure and polarity of lipid droplets (LDs), but with no clear evidence. Herein, we report the first example of an LD/nucleus dual-targeted ratiometric fluorescent probe, CQPP, for monitoring polarity changes in the cellular microenvironment. Due to the donor-acceptor structure of CQPP, it offers ratiometric fluorescence emission and fluorescence lifetime signals that reflect polarity variations. Using nucleus imaging as a reference, CQPP was applied to report the increase in LD polarity and the homogenization of polarity between LDs and cytoplasm in the ferroptosis model. This LD/nucleus dual-targeted fluorescent probe shows the great potential of using fluorescence imaging to study ferroptosis and ferroptosis-related diseases.


Assuntos
Núcleo Celular/metabolismo , Corantes Fluorescentes/química , Gotículas Lipídicas/metabolismo , Ferroptose , Corantes Fluorescentes/síntese química , Humanos , Gotículas Lipídicas/química , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo
6.
Angew Chem Int Ed Engl ; 59(29): 11779-11783, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32324962

RESUMO

In order to promote the development of photodynamic therapy (PDT), undesired side effects like low tumor specificity and the "always-on" phenomenon should be avoided. An effective solution is to construct an adaptive photosensitizer that can be activated to generate reactive oxygen species (ROS) in the tumor microenvironment. Herein, we design and synthesize a supramolecular switch based on a host-guest complex containing a water-soluble pillar[5]arene (WP5) and an AIEgen photosensitizer (G). The formation of the host-guest complex WP5⊃G quenches the fluorescence and inhibits ROS generation of G. Benefitting from the pH-responsiveness of WP5, the binding site between G and WP5 changes in an acidic environment through a shuttle movement. Consequently, fluorescence and ROS generation of the host-guest complex can be switched on at pH 5.0. This work offers a new paradigm for the construction of adaptive photosensitizers by using a supramolecular method.


Assuntos
Calixarenos/química , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/farmacologia , Células 3T3 , Ácidos , Animais , Desenho de Fármacos , Fluorescência , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Modelos Moleculares , Fotoquimioterapia , Espécies Reativas de Oxigênio/química
7.
Angew Chem Int Ed Engl ; 58(10): 3062-3066, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30549168

RESUMO

Photooxidation under sunlight has potential in organic synthesis, bacterial killing, and organic waste treatment. Photosensitizers (PSs) can play an important role in this process. High 1 O2 generation efficiency and excellent photostability under sunlight, as well as easy recyclability are ideal properties for PSs, but are not easy to achieve simultaneously. Herein, a pure organic porous conjugated polymer PS, CPTF, shows great photostability, large specific surface area, and high 1 O2 generation efficiency under sunlight for photooxidation. For the oxidation of aromatic aldehyde to aromatic acid, the PS catalyst shows excellent recyclability, and enables solvent-free reactions in high yields both under direct sunlight and simulated AM 1.5G irradiation. In addition, the successful application of CPTF as an antibacterial agent and organic waste decomposition under simulated AM 1.5G irradiation indicates the potential of CPTF in sunlight-induced waste water treatment.

8.
Small ; 14(52): e1803325, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30480358

RESUMO

Efficient organic photosensitizers are attractive for cancer cell ablation in photodynamic therapy. Bright fluorescent photosensitizers are highly desirable for simultaneous imaging and therapy. However, due to fundamental competition between emission and singlet oxygen generation, design attempts to increase singlet oxygen generation almost always leads to the loss of fluorescence. Herein, it is shown for the first time that nanocrystallization enables a simultaneous and significant increase in the brightness and singlet oxygen generation of an organic photosensitizer. Spectroscopic studies show simultaneous enhancement in the visible light absorption and fluorescence after nanocrystallization. The enhanced absorption of visible light in nanocrystals is found to translate directly to the enhanced singlet oxygen production, which shows a higher ability to kill HeLa cells as compared to their amorphous counterpart.

9.
Small ; 14(34): e1801839, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30039934

RESUMO

Three dibenzothiophene-S,S-dioxide-based alternating copolymers were synthesized by facile Suzuki polymerization for visible light-responsive hydrogen production from water (> 420 nm). Without addition of any cocatalyst, FluPh2-SO showed a photocatalytic efficiency of 3.48 mmol h-1 g-1 , while a larger hydrogen evolution rate (HER) of 4.74 mmol h-1 g-1 was achieved for Py-SO, which was ascribed to the improved coplanarity of the polymer that facilitated both intermolecular packing and charge transport. To minimize the possible steric hindrance of FluPh2-SO by replacing 9,9'-diphenylfluorene with fluorene, Flu-SO exhibited a more red-shifted absorption than FluPh2-SO and yielded the highest HER of 5.04 mmol h-1 g-1 . This work highlights the potential of dibenzothiophene-S,S-dioxide as a versatile building block and the rational design strategy for achieving high photocatalytic efficiency.

10.
Anal Chem ; 89(5): 3162-3168, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28192960

RESUMO

The development of red fluorophores with efficient solid-state emission is still challenging. Herein, a red fluorophore 1 with aggregation-induced emission (AIE) and excited-state intramolecular proton transfer (ESIPT) characteristics is rationally designed and facilely synthesized by attaching an electron-donor diethylamine and an electron-acceptor maleonitrile group to salicyladazine. In contrast to many red fluorophores which undergo serious aggregation-caused quenching (ACQ), compound 1 emits bright red fluorescence (λem = 650 nm, ΦF = 24.3%) in the solid state with a large Stokes shift of 174 nm. Interestingly, control compounds 2 and 3, which have similar structures as 1, exhibit obvious aggregation-caused quenching (ACQ) characteristics. The difference in the crystal structures of 1, 2, and 3 reveals that the interplanar spacing among molecules plays a decisive role in realizing the AIE characteristics of 1. Moreover, when the hydroxyl group of 1 was substituted by an esterase reactive acetoxyl, a fluorescence light-up probe 4 was developed for sensing of esterase based on the selective reaction between 4 and esterase to generate the AIE and ESIPT active molecule 1. The linear range for in vitro quantification of esterase is 0.01-0.15 U/mL with a detection limit of 0.005 U/mL. Probe 4 was also successfully applied to image esterase in mitochondria of living cells.


Assuntos
Esterases/análise , Corantes Fluorescentes/química , Microscopia de Fluorescência , Esterases/metabolismo , Corantes Fluorescentes/síntese química , Células HeLa , Humanos , Células MCF-7 , Mitocôndrias/enzimologia , Prótons , Espectrometria de Fluorescência
11.
Angew Chem Int Ed Engl ; 56(40): 12160-12164, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28771963

RESUMO

Persistent room-temperature phosphorescence (RTP) in pure organic materials has attracted great attention because of their unique optical properties. The design of organic materials with bright red persistent RTP remains challenging. Herein, we report a new design strategy for realizing high brightness and long lifetime of red-emissive RTP molecules, which is based on introducing an alkoxy spacer between the hybrid units in the molecule. The spacer offers easy Br-H bond formation during crystallization, which also facilitates intermolecular electron coupling to favor persistent RTP. As the majority of RTP compounds have to be confined in a rigid environment to quench nonradiative relaxation pathways for bright phosphorescence emission, nanocrystallization is used to not only rigidify the molecules but also offer the desirable size and water-dispersity for biomedical applications.


Assuntos
Medições Luminescentes/métodos , Nanopartículas/química , Compostos Orgânicos/química , Temperatura , Bromo/química , Linhagem Celular Tumoral , Cor , Humanos , Ligação de Hidrogênio , Microscopia Eletrônica de Varredura
12.
Small ; 12(45): 6243-6254, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27671747

RESUMO

Conjugated polymers have been increasingly studied for photothermal therapy (PTT) because of their merits including large absorption coefficient, facile tuning of exciton energy dissipation through nonradiative decay, and good therapeutic efficacy. The high photothermal conversion efficiency (PCE) is the key to realize efficient PTT. Herein, a donor-acceptor (D-A) structured porphyrin-containing conjugated polymer (PorCP) is reported for efficient PTT in vitro and in vivo. The D-A structure introduces intramolecular charge transfer along the backbone, resulting in redshifted Q band, broadened absorption, and increased extinction coefficient as compared to the state-of-art porphyrin-based photothermal reagent. Through nanoencapsulation, the dense packing of a large number of PorCP molecules in a single nanoparticle (NP) leads to favorable nonradiative decay, good photostability, and high extinction coefficient of 4.23 × 104 m-1 cm-1 at 800 nm based on porphyrin molar concentration and the highest PCE of 63.8% among conjugated polymer NPs. With the aid of coloaded fluorescent conjugated polymer, the cellular uptake and distribution of the PorCP in vitro can be clearly visualized, which also shows effective photothermal tumor ablation in vitro and in vivo. This research indicates a new design route of conjugated polymer-based photothermal therapeutic materials for potential personalized theranostic nanomedicine.


Assuntos
Fototerapia/métodos , Polímeros/química , Porfirinas/química , Animais , Linhagem Celular Tumoral , Células HeLa , Humanos , Hiperplasia/terapia , Hepatopatias/terapia , Nanopartículas Metálicas/química , Nanomedicina Teranóstica/métodos , Peixe-Zebra
13.
Small ; 12(6): 782-92, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26701147

RESUMO

Robust luminescent dyes with efficient two-photon fluorescence are highly desirable for biological imaging applications, but those suitable for organic dots fabrication are still rare because of aggregation-caused quenching. In this work, a red fluorescent silole, 2,5-bis[5-(dimesitylboranyl)thiophen-2-yl]-1-methyl-1,3,4-triphenylsilole ((MesB)2 DTTPS), is synthesized and characterized. (MesB)2 DTTPS exhibits enhanced fluorescence efficiency in nanoaggregates, indicative of aggregation-enhanced emission (AEE). The organic dots fabricated by encapsulating (MesB)2 DTTPS within lipid-PEG show red fluorescence peaking at 598 nm and a high fluorescence quantum yield of 32%. Upon excitation at 820 nm, the dots show a large two-photon absorption cross section of 3.43 × 10(5) GM, which yields a two-photon action cross section of 1.09 × 10(5) GM. These (MesB)2 DTTPS dots show good biocompatibility and are successfully applied to one-photon and two-photon fluorescence imaging of MCF-7 cells and two-photon in vivo visualization of the blood vascular of mouse muscle in a high-contrast and noninvasive manner. Moreover, the 3D blood vasculature located at the mouse ear skin with a depth of over 100 µm can also be visualized clearly, providing the spatiotemporal information about the whole blood vascular network.


Assuntos
Vasos Sanguíneos/fisiologia , Diagnóstico por Imagem/métodos , Corantes Fluorescentes/química , Fótons , Silanos/química , Animais , Cristalografia por Raios X , Fluorescência , Humanos , Células MCF-7 , Camundongos , Silanos/síntese química , Soluções
14.
Small ; 12(47): 6576-6585, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27592863

RESUMO

Stem-cell based therapy is an emerging therapeutic approach for ischemic stroke treatment. Bone marrow stromal cells (BMSCs) are in common use as a cell source for stem cell therapy and show promising therapeutic outcomes for stroke treatment. One challenge is to develop a reliable tracking strategy to monitor the fate of BMSCs and assess their therapeutic effects in order to improve the success rate of such treatment. Herein, TPEEP, a fluorogen with aggregation-induced emission characteristics and near-infrared emission are designed and synthesized and further fabricated into organic nanoparticles (NPs). The obtained NPs show high fluorescence quantum yield, low cytotoxicity with good physical and photostability, which display excellent tracking performance of BMSCs in vitro and in vivo. Using a rat photothrombotic ischemia model as an example, the NP-labeled BMSCs are able to migrate to the stroke lesion site to yield bright red fluorescence. Immunofluorescence staining shows that the NP labeling does not affect the normal function of BMSCs, proving their good biocompatibility in vivo. These merits make TPEEP NP a potential cell tracker to evaluate the fate of BMSCs in cell therapy.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Corantes Fluorescentes/química , Nanopartículas/química , Animais , Células da Medula Óssea/metabolismo , Modelos Animais de Doenças , Corantes Fluorescentes/síntese química , Ratos
15.
Angew Chem Int Ed Engl ; 55(22): 6457-61, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27079297

RESUMO

Bioorthogonal turn-on probes have been widely utilized in visualizing various biological processes. Most of the currently available bioorthogonal turn-on probes are blue or green emissive fluorophores with azide or tetrazine as functional groups. Herein, we present an alternative strategy of designing bioorthogonal turn-on probes based on red-emissive fluorogens with aggregation-induced emission characteristics (AIEgens). The probe is water soluble and non-fluorescent due to the dissipation of energy through free molecular motion of the AIEgen, but the fluorescence is immediately turned on upon click reaction with azide-functionalized glycans on cancer cell surface. The fluorescence turn-on is ascribed to the restriction of molecular motion of AIEgen, which populates the radiative decay channel. Moreover, the AIEgen can generate reactive oxygen species (ROS) upon visible light (λ=400-700 nm) irradiation, demonstrating its dual role as an imaging and phototherapeutic agent.

16.
Angew Chem Int Ed Engl ; 55(21): 6192-6, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27071955

RESUMO

The isomerization and optical properties of the cis and trans isomers of tetraphenylethene (TPE) derivatives with aggregation-induced emission (AIEgens) have been sparsely explored. We have now observed the tautomerization-induced isomerization of a hydroxy-substituted derivative, TPETH-OH, under acidic but not under basic conditions. Replacing the proton of the hydroxy group in TPETH-OH with an alkyl group leads to the formation of TPETH-MAL, for which the pure cis and trans isomers were obtained and characterized by HPLC analysis and NMR spectroscopy. Importantly, cis-TPETH-MAL emits yellow fluorescence in DMSO at -20 °C whereas trans-TPETH-MAL shows red fluorescence under the same conditions. Moreover, the geometry of cis- and trans-TPETH-MAL remains unchanged when they undergo thiol-ene reactions to form cis- and trans-TPETH-cRGD, respectively. Collectively, our findings improve our fundamental understanding of the cis/trans isomerization and photophysical properties of TPE derivatives, which will guide further AIEgen design for various applications.

17.
Angew Chem Int Ed Engl ; 54(24): 7181-4, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25925015

RESUMO

A novel white-light-emitting organic molecule, which consists of carbazolyl- and phenothiazinyl-substituted benzophenone (OPC) and exhibits aggregation-induced emission-delayed fluorescence (AIE-DF) and mechanofluorochromic properties was synthesized. The CIE color coordinates of OPC were directly measured with a non-doped powder, which presented white-emission coordinates (0.33, 0.33) at 244 K to 252 K and (0.35, 0.35) at 298 K. The asymmetric donor-acceptor-donor' (D-A-D') type of OPC exhibits an accurate inherited relationship from dicarbazolyl-substituted benzophenone (O2C, D-A-D) and diphenothiazinyl-substituted benzophenone (O2P, D'-A-D'). By purposefully selecting the two parent molecules, that is, O2C (blue) and O2P (yellow), the white-light emission of OPC can be achieved in a single molecule. This finding provides a feasible molecular strategy to design new AIE-DF white-light-emitting organic molecules.

18.
Angew Chem Int Ed Engl ; 54(3): 874-8, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25469742

RESUMO

Compounds displaying delayed fluorescence (DF), from severe concentration quenching, have limited applications as nondoped organic light-emitting diodes and material sciences. As a nondoped fluorescent emitter, aggregation-induced emission (AIE) materials show high emission efficiency in their aggregated states. Reported herein is an AIE-active, DF compound in which the molecular interaction is modulated, thereby promoting triplet harvesting in the solid state with a high photoluminescence quantum yield of 93.3%, which is the highest quantum yield, to the best of our knowledge, for long-lifetime emitters. Simultaneously, the compound with asymmetric molecular structure exhibited strong mechanoluminescence (ML) without pretreatment in the solid state, thus exploiting a design and synthetic strategy to integrate the features of DF, AIE, and ML into one compound.

19.
Adv Sci (Weinh) ; 11(25): e2400661, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38659278

RESUMO

The importance of halogen bonds (XBs) in the regulation of material properties through a variation in the electrostatic potential of the halogen atom is not attracted much attention. Herein, this study utilizes in situ single crystal X-ray diffraction and synchrotron-based X-ray techniques to investigate the cooling-triggered irreversible single-crystal-to-single-crystal transformation of the DMF solvated iodo-substituted squaraine dye (SQD-I). Transformation is observed to be mediated by solvent-involved XB formation and strengthening of electrostatic interaction between adjacent SQD-I molecules. By immersing a DMF solvate in acetonitrile a solvent exchange without loss of long-range ordering is observed. This is attributed to conservation of the molecular charge distribution of SQD-I molecules during the process. The different solvates can be used in combination for temperature-dependent image encryption. This work emphasizes the changes caused by XB formation to the electrostatic potentials of halogen containing molecules and their influence on material properties and presents the potential utility of XBs in the design of soft-porous crystals and luminescent materials.

20.
ACS Nano ; 17(4): 3324-3333, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36773320

RESUMO

Nonalcoholic steatohepatitis (NASH) is the critical stage in the development of nonalcoholic fatty liver disease (NAFLD) from simple and reversible steatosis to irreversible cirrhosis and even hepatocellular carcinoma (HCC). Thus, the diagnosis of NASH is important for preventing the progress of NAFLD into a fatal condition. The oxidative enzyme myeloperoxidase (MPO), which is mostly produced by polymorphonuclear neutrophil granulocytes (NEU), has been identified as a key player in lipid peroxidation in inflamed tissues. Considering that the expression of MPO was much higher in NASH than in the nonalcoholic fatty liver (NAFL) with steatosis, we designed a nanoparticle platform based on ultrasmall iron oxide (USIO) nanoparticles to realize MPO-sensitive NASH diagnosis. After modification of USIO nanoparticles with amphiphilic poly(ethylene glycol) (PEG) and conjugation with 5-hydroxytryptamine (5HT), a physiological substrate for MPO, the final nanocomposite (USIO-DA-PEG-5HT) revealed MPO-mediated aggregation at the inflammatory site of NASH. Meanwhile, the intrinsic T1-weighted magnetic resonance (MR) signal of dispersed USIO-DA-PEG-5HT nanoparticles diminishes, while the T2-weighted MR signal is amplified owing to the aggregation effect. These USIO-DA-PEG-5HT nanoprobes offer great potential for improving NASH MR imaging diagnostic accuracy and sensitivity compared to existing molecular MR contrast agents with a single imaging modality.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Carcinoma Hepatocelular/patologia , Peroxidase/metabolismo , Neoplasias Hepáticas/patologia , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA