Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Qual Health Care ; 36(3)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39018022

RESUMO

Control charts, used in healthcare operations to monitor process stability and quality, are essential for ensuring patient safety and improving clinical outcomes. This comprehensive research study aims to provide a thorough understanding of the role of control charts in healthcare quality monitoring and future perspectives by utilizing a dual methodology approach involving a systematic review and a pioneering bibliometric analysis. A systematic review of 73 out of 223 articles was conducted, synthesizing existing literature (1995-2023) and revealing insights into key trends, methodological approaches, and emerging themes of control charts in healthcare. In parallel, a bibliometric analysis (1990-2023) on 184 articles gathered from Web of Science and Scopus was performed, quantitatively assessing the scholarly landscape encompassing control charts in healthcare. Among 25 countries, the USA is the foremost user of control charts, accounting for 33% of all applications, whereas among 14 health departments, epidemiology leads with 28% of applications. The practice of control charts in health monitoring has increased by more than one-third during the last 3 years. Globally, exponentially weighted moving average charts are the most popular, but interestingly the USA remained the top user of Shewhart charts. The study also uncovers a dynamic landscape in healthcare quality monitoring, with key contributors, research networks, research hotspot tendencies, and leading countries. Influential authors, such as J.C. Benneyan, W.H. Woodall, and M.A. Mohammed played a leading role in this field. In-countries networking, USA-UK leads the largest cluster, while other clusters include Denmark-Norway-Sweden, China-Singapore, and Canada-South Africa. From 1990 to 2023, healthcare monitoring evolved from studying efficiency to focusing on conditional monitoring and flowcharting, with human health, patient safety, and health surveys dominating 2011-2020, and recent years emphasizing epidemic control, COronaVIrus Disease of 2019 (COVID-19) statistical process control, hospitals, and human health monitoring using control charts. It identifies a transition from conventional to artificial intelligence approaches, with increasing contributions from machine learning and deep learning in the context of Industry 4.0. New researchers and journals are emerging, reshaping the academic context of control charts in healthcare. Our research reveals the evolving landscape of healthcare quality monitoring, surpassing traditional reviews. We uncover emerging trends, research gaps, and a transition in leadership from established contributors to newcomers amidst technological advancements. This study deepens the importance of control charts, offering insights for healthcare professionals, researchers, and policymakers to enhance healthcare quality. Future challenges and research directions are also provided.


Assuntos
Bibliometria , Qualidade da Assistência à Saúde , Humanos , Segurança do Paciente
2.
Int J Qual Health Care ; 35(3)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37552630

RESUMO

Epidemiologists frequently adopt statistical process control tools, like control charts, to detect changes in the incidence or prevalence of a specific disease in real time, thereby protecting against outbreaks and emergent health concerns. Control charts have proven essential in instantly identifying fluctuations in infection rates, spotting emerging patterns, and enabling timely reaction measures in the context of COVID-19 monitoring. This study aims to review and select an optimal control chart in epidemiology to monitor variations in COVID-19 deaths and understand pandemic mortality patterns. An essential aspect of the present study is selecting an appropriate monitoring technique for distinct deaths in the USA in seven phases, including pre-growth, growth, and post-growth phases. Stage-1 evaluated control chart applications in epidemiology departments of 12 countries between 2000 and 2022. The study assessed various control charts and identified the optimal one based on maximum shift detection using sample data. This study considered at Shewhart ($\bar X$, $R$, $C$) control charts and exponentially weighted moving average (EWMA) control chart with smoothing parameters λ = 0.25, 0.5, 0.75, and 1 were all investigated in this study. In Stage-2, we applied the EWMA control chart for monitoring because of its outstanding shift detection capabilities and compatibility with the present data. Daily deaths have been monitored from March 2020 to February 2023. Control charts in epidemiology show growing use, with the USA leading at 42% applications among top countries. During the application on COVID-19 deaths, the EWMA chart accurately depicted mortality dynamics from March 2020 to February 2022, indicating six distinct stages of death. The third and fifth waves were extremely catastrophic, resulting in a considerable loss of life. Significantly, a persistent sixth wave appeared from March 2022 to February 2023. The EWMA map effectively determined the peaks associated with each wave by thoroughly examining the time and amount of deaths, providing vital insights into the pandemic's progression. The severity of each wave was measured by the average number of deaths $W5(1899)\,\gt\,W3(1881)\,\gt\,W4(1393)\,\gt\,W1(1036)\,\gt\,W2(853)\,\gt\,(W6(473)$. The USA entered a seventh phase (6th wave) from March 2022 to February 2023, marked by fewer deaths. While reassuring, it remains crucial to maintain vaccinations and pandemic control measures. Control charts enable early detection of daily COVID-19 deaths, providing a systematic strategy for government and medical staff. Incorporating the EWMA chart for monitoring immunizations, cases, and deaths is recommended.


Assuntos
COVID-19 , Humanos , Estados Unidos/epidemiologia , Vacinação
3.
Medicine (Baltimore) ; 103(37): e39328, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39287317

RESUMO

Recent findings indicate a growing trend in data analysis within healthcare using statistical process control. However, the diversity of variables involved necessitates the expansion of new process control methodologies. This study examined control chart applications in cardiology by using generalized additive models (GAMs) to construct profiles while involving multiple healthcare variables (08). Two distinct statistics: deviation (D), and Hotelling (T2) were employed for constructing control charts: a commonly used single-variable statistic for nonparametric profiles and an innovative multivariate statistic that assesses the contribution of each element to process changes. These statistics were tested for monitoring ischemic and hemorrhagic strokes in 1-year acute stroke (369) patients at the Faisalabad Institute of Cardiology. Demographic parameters (age, gender), vascular risk factors (diabetes, family history, sleep), socioeconomic variables (smoking, location), and blood pressure are included in the model. The research includes the computation of zero-state average run length (ARL) for assessing the performance of control charts. The characteristics of the proposed profile were analyzed, such as the T2 control chart, performing better than the D chart for medium-to-large shifts (δ ≥ 0.50). On the other hand, for small δ = 0.25, the D control chart produces smaller ARL values but more significant standard deviations. While both statistics contribute to profile monitoring, T2 is more effective at identifying and tracing medium and large shifts. In conclusion, such handy tools may aid healthcare performance monitoring, especially for complicated predictor-response relationships. Monitored profiles demonstrated that GAMs are useful for healthcare analysis and process monitoring.


Assuntos
Acidente Vascular Cerebral , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Qualidade da Assistência à Saúde , Fatores de Risco , Modelos Estatísticos
4.
Medicine (Baltimore) ; 103(27): e38766, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968501

RESUMO

Control charts help epidemiologists and healthcare professionals monitor disease incidence and prevalence in real time, preventing outbreaks and health emergencies. However, there remains a notable gap in the comprehensive exploration and application of these techniques, particularly in the context of monitoring and managing disease outbreaks. This study analyses and categorizes worldwide control chart applications from 2000 to 2023 in outbreak monitoring in over 20 countries, focusing on corona-virus (COVID-19), and chooses optimal control charts for monitoring US COVID-19 death waves from February 2020 to December 2023. The systematic literature review analyzes available 35 articles, categorizing data by year, variable, country, study type, and chart design. A selected optimal chart is applied to monitor COVID-19 death patterns and waves in the USA. Control chart adoption in epidemiology monitoring increased during the COVID-19 pandemic, with annual patterns showing a rise in 2021 to 2023 (18%, 36%, 41%). Important variables from 2000 to 2019 include influenza counts, Salmonella cases, and infection rates, while COVID-19 studies focus more on cases, infection rates, symptoms, and deaths. Among 22 countries, the USA (29%) is the top applier of control charts. The monitoring of USA COVID-19 deaths reveals 8 waves with varying severity  >  >  >  >  >  >  > . The associated with the JN.1 variant, highlights ongoing challenges. This study emphasizes the significance of control charts in outbreak monitoring for early disease diagnosis and intervention. Control charts help healthcare workers manage epidemics using data-driven methods, improving public health. COVID-19 mortality analysis emphasizes their importance, encouraging worldwide use.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/mortalidade , SARS-CoV-2 , Monitoramento Epidemiológico , Saúde Global , Pandemias , Surtos de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA