Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Transl Med ; 14: 51, 2016 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-26873324

RESUMO

BACKGROUND: Adjuvant imatinib is useful in patients with gastrointestinal stromal tumors (GIST) at high risk of recurrence. At present, the risk of recurrence is determined based on tumor size, mitotic rate, tumor site, and tumor rupture. Previous studies using various biochemical pathways identified gene expression patterns that distinguish two subsets of aggressive fibromatosis (AF), serous ovarian carcinoma (OVCA), and clear cell renal cell carcinoma (RCC). These gene sets separated soft tissue sarcomas into two groups with different probabilities of developing metastatic disease. The present study used these gene sets to identify GIST subgroups with different probabilities of developing metastatic disease. METHODS: We utilized these three gene sets, hierarchical clustering, and Kaplan-Meier analysis, to examine 60 primary resected GIST samples using Agilent chip expression profiling. RESULTS: Hierarchical clustering using both the combined and individual AF-, OVCA-, and RCC- gene sets identified differences in probabilities of developing metastatic disease between the clusters defined by the first branch point of the clustering dendrograms (p = 0.029 for the combined gene set, p = 0.003 for the AF-gene set, p < 0.001 for the OVCA-gene set, and p = 0.003 for the RCC-gene set). CONCLUSIONS: Hierarchical clustering using these gene sets identified at least two subsets of GIST with distinct clinical behavior and risk of metastatic disease. The use of gene expression analysis along with other known prognostic factors may better predict the long-term outcome following surgery, and thus restrict the use of adjuvant therapy to high-risk GIST, and reduce heterogeneity among groups in clinical trials of new drugs.


Assuntos
Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Linhagem Celular Tumoral , Análise por Conglomerados , Intervalos de Confiança , Bases de Dados Genéticas , Humanos , Estimativa de Kaplan-Meier , Metástase Neoplásica , Recidiva Local de Neoplasia/patologia , Probabilidade , Fatores de Risco
2.
J Transl Med ; 12: 176, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24950699

RESUMO

BACKGROUND: The biologic heterogeneity of soft tissue sarcomas (STS), even within histological subtypes, complicates treatment. In earlier studies, gene expression patterns that distinguish two subsets of clear cell renal carcinoma (RCC), serous ovarian carcinoma (OVCA), and aggressive fibromatosis (AF) were used to separate 73 STS into two or four groups with different probabilities of developing metastatic disease (PrMet). This study was designed to confirm our earlier observations in a larger independent data set. METHODS: We utilized these gene sets, hierarchical clustering (HC), and Kaplan-Meier analysis, to examine 309 STS, using Affymetrix chip expression profiling. RESULTS: HC using the combined AF-, RCC-, and OVCA-gene sets identified subsets of the STS samples. Analysis revealed differences in PrMet between the clusters defined by the first branch point of the clustering dendrogram (p = 0.048), and also among the four different clusters defined by the second branch points (p < 0.0001). Analysis also revealed differences in PrMet between the leiomyosarcomas (LMS), dedifferentiated liposarcomas (LipoD), and undifferentiated pleomorphic sarcomas (UPS) (p = 0.0004). HC of both the LipoD and UPS sample sets divided the samples into two groups with different PrMet (p = 0.0128, and 0.0002, respectively). HC of the UPS samples also showed four groups with different PrMet (p = 0.0007). HC found no subgroups of the LMS samples. CONCLUSIONS: These data confirm our earlier studies, and suggest that this approach may allow the identification of more than two subsets of STS, each with distinct clinical behavior, and may be useful to stratify STS in clinical trials and in patient management.


Assuntos
Expressão Gênica , Heterogeneidade Genética , Metástase Neoplásica/genética , Sarcoma/patologia , Humanos , Probabilidade , Sarcoma/classificação , Sarcoma/genética , Sitios de Sequências Rotuladas
3.
BMC Genomics ; 14: 694, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24112552

RESUMO

BACKGROUND: The initial interaction between host cell and pathogen sets the stage for the ensuing infection and ultimately determine the course of disease. However, there is limited knowledge of the transcripts utilized by host and pathogen and how they may impact one another during this critical step. The purpose of this study was to create a host-Mycobacterium avium subsp. paratuberculosis (MAP) interactome for early infection in an epithelium-macrophage co-culture system using RNA-seq. RESULTS: Establishment of the host-MAP interactome revealed a novel iron assimilation system for carboxymycobactin. Iron assimilation is linked to nitric oxide synthase-2 production by the host and subsequent nitric oxide buildup. Iron limitation as well as nitric oxide is a prompt for MAP to enter into an iron sequestration program. This new iron sequestration program provides an explanation for mycobactin independence in some MAP strains grown in vitro as well as during infection within the host cell. Utilization of such a pathway is likely to aid MAP establishment and long-term survival within the host. CONCLUSIONS: The host-MAP interactome identified a number of metabolic, DNA repair and virulence genes worthy for consideration as novel drug targets as well as future pathogenesis studies. Reported interactome data may also be utilized to conduct focused, hypothesis-driven research. Co-culture of uninfected bovine epithelial cells (MAC-T) and primary bovine macrophages creates a tolerant genotype as demonstrated by downregulation of inflammatory pathways. This co-culture system may serve as a model to investigate other bovine enteric pathogens.


Assuntos
Ferro/metabolismo , Mycobacterium avium subsp. paratuberculosis/fisiologia , Óxido Nítrico/fisiologia , Paratuberculose/microbiologia , Transcriptoma , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Bovinos , Parede Celular/metabolismo , Técnicas de Cocultura , Células Epiteliais/microbiologia , Feminino , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Interferons/genética , Interferons/metabolismo , Metabolismo dos Lipídeos , Macrófagos/microbiologia , Redes e Vias Metabólicas , Níquel/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Complemento/genética , Receptores de Complemento/metabolismo , Análise de Sequência de RNA , Estresse Fisiológico
4.
Funct Integr Genomics ; 13(1): 33-41, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23086595

RESUMO

Vegetative axillary meristem (AXM) activity results in the production of branches. In barley (Hordeum vulgare L.), vegetative AXM develop in the crown and give rise to modified branches, referred to as tillers. Mutations in the barley low-tillering mutant uniculm2 block vegetative AXM development and prevent tiller development. The objectives of this work were to examine gene expression in wild-type and cul2 mutant plants, fine map the CUL2 gene, and to examine synteny in the CUL2 region in barley with rice. RNA profiling experiments using two near-isogenic line pairs carrying either the cul2 mutant allele or wild-type CUL2 allele in different genetic backgrounds detected 28 unique gene transcripts exhibiting similar patterns of differential accumulation in both genetic backgrounds, indicating that we have identified key genes impacted by the CUL2 gene. Twenty-four genes had higher abundance in uniculm2 mutant tissues, and nearly half of the annotated genes likely function in stress-response or signal transduction pathways. Genetic mapping identified five co-segregating markers in 1,088 F2 individuals. These markers spanned the centromere region on chromosome 6H, and coincided with a 50-cM region on rice chromosome 2, indicating that it may be difficult to positionally clone CUL2. Taken together, the results revealed stress response and signal transduction pathways that are associated with the CUL2 gene, isolating CUL2 via positional cloning approaches that may be difficult, and the remnants of barley-rice synteny in the CUL2 region.


Assuntos
Centrômero/genética , Genes de Plantas , Hordeum/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Mutação , Oryza/genética , Transdução de Sinais/genética , Estresse Fisiológico/genética , Sintenia , Transcrição Gênica
5.
Plant Physiol ; 159(4): 1295-308, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22696021

RESUMO

Genome-wide structural and gene content variations are hypothesized to drive important phenotypic variation within a species. Structural and gene content variations were assessed among four soybean (Glycine max) genotypes using array hybridization and targeted resequencing. Many chromosomes exhibited relatively low rates of structural variation (SV) among genotypes. However, several regions exhibited both copy number and presence-absence variation, the most prominent found on chromosomes 3, 6, 7, 16, and 18. Interestingly, the regions most enriched for SV were specifically localized to gene-rich regions that harbor clustered multigene families. The most abundant classes of gene families associated with these regions were the nucleotide-binding and receptor-like protein classes, both of which are important for plant biotic defense. The colocalization of SV with plant defense response signal transduction pathways provides insight into the mechanisms of soybean resistance gene evolution and may inform the development of new approaches to resistance gene cloning.


Assuntos
Genes de Plantas/genética , Glycine max/genética , Glycine max/fisiologia , Família Multigênica/genética , Estresse Fisiológico/genética , Cromossomos de Plantas/genética , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA/genética , Resistência à Doença/genética , Ecótipo , Exoma/genética , Genótipo , Técnicas de Genotipagem , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Glycine max/imunologia
6.
Plant Physiol ; 155(2): 645-55, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21115807

RESUMO

Soybean (Glycine max) is a self-pollinating species that has relatively low nucleotide polymorphism rates compared with other crop species. Despite the low rate of nucleotide polymorphisms, a wide range of heritable phenotypic variation exists. There is even evidence for heritable phenotypic variation among individuals within some cultivars. Williams 82, the soybean cultivar used to produce the reference genome sequence, was derived from backcrossing a Phytophthora root rot resistance locus from the donor parent Kingwa into the recurrent parent Williams. To explore the genetic basis of intracultivar variation, we investigated the nucleotide, structural, and gene content variation of different Williams 82 individuals. Williams 82 individuals exhibited variation in the number and size of introgressed Kingwa loci. In these regions of genomic heterogeneity, the reference Williams 82 genome sequence consists of a mosaic of Williams and Kingwa haplotypes. Genomic structural variation between Williams and Kingwa was maintained between the Williams 82 individuals within the regions of heterogeneity. Additionally, the regions of heterogeneity exhibited gene content differences between Williams 82 individuals. These findings show that genetic heterogeneity in Williams 82 primarily originated from the differential segregation of polymorphic chromosomal regions following the backcross and single-seed descent generations of the breeding process. We conclude that soybean haplotypes can possess a high rate of structural and gene content variation, and the impact of intracultivar genetic heterogeneity may be significant. This detailed characterization will be useful for interpreting soybean genomic data sets and highlights important considerations for research communities that are developing or utilizing a reference genome sequence.


Assuntos
Variação Genética , Genoma de Planta , Glycine max/genética , Hibridização Genômica Comparativa , DNA de Plantas/genética , Haplótipos , Endogamia , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
7.
Plant Physiol ; 156(1): 240-53, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21321255

RESUMO

Mutagenized populations have become indispensable resources for introducing variation and studying gene function in plant genomics research. In this study, fast neutron (FN) radiation was used to induce deletion mutations in the soybean (Glycine max) genome. Approximately 120,000 soybean seeds were exposed to FN radiation doses of up to 32 Gray units to develop over 23,000 independent M2 lines. Here, we demonstrate the utility of this population for phenotypic screening and associated genomic characterization of striking and agronomically important traits. Plant variation was cataloged for seed composition, maturity, morphology, pigmentation, and nodulation traits. Mutants that showed significant increases or decreases in seed protein and oil content across multiple generations and environments were identified. The application of comparative genomic hybridization (CGH) to lesion-induced mutants for deletion mapping was validated on a midoleate x-ray mutant, M23, with a known FAD2-1A (for fatty acid desaturase) gene deletion. Using CGH, a subset of mutants was characterized, revealing deletion regions and candidate genes associated with phenotypes of interest. Exome resequencing and sequencing of PCR products confirmed FN-induced deletions detected by CGH. Beyond characterization of soybean FN mutants, this study demonstrates the utility of CGH, exome sequence capture, and next-generation sequencing approaches for analyses of mutant plant genomes. We present this FN mutant soybean population as a valuable public resource for future genetic screens and functional genomics research.


Assuntos
Hibridização Genômica Comparativa/métodos , Genoma de Planta/genética , Genômica , Glycine max/genética , Proteínas de Plantas/genética , Exoma/genética , Nêutrons Rápidos , Sequenciamento de Nucleotídeos em Larga Escala , Sementes/genética , Análise de Sequência de DNA , Deleção de Sequência
8.
Funct Integr Genomics ; 11(1): 95-102, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20865292

RESUMO

Fusarium head blight (FHB), primarily caused by Fusarium graminearum, reduces grain yield and quality in barley. Resistance to FHB is partial and quantitatively inherited. Previously, major FHB resistant QTL were detected on barley chromosome 2H Bin 8 and 2H Bin 10, and another QTL for reduced deoxynivalenol (DON) accumulation was identified on chromosome 3H Bin 6. To develop an understanding of the molecular responses controlled by these loci, we examined DON and fungal biomass levels and the transcriptome differences in near-isogenic line (NIL) pairs carrying contrasting resistant and susceptible alleles at these QTL during F. graminearum infection. No overlap was found among the differentially accumulated transcripts of the three NIL pairs, indicating that the response to infection controlled by the resistance alleles at each QTL may be distinct. Transcripts showing differential accumulation between resistant and susceptible NILs were compared to results from previous wheat/barley-F. graminearum studies and integrated into a wheat/barley-F. graminearum interaction model.


Assuntos
Fusarium/genética , Hordeum/genética , Hordeum/microbiologia , Imunidade Inata/genética , Micoses/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Biomarcadores/metabolismo , Mapeamento Cromossômico , DNA de Plantas/genética , Perfilação da Expressão Gênica , Hordeum/imunologia , Micoses/imunologia , Micoses/microbiologia , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase , Tricotecenos/metabolismo , Triticum/genética
9.
Plant Physiol ; 154(1): 3-12, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20656899

RESUMO

Near-isogenic lines (NILs) are valuable genetic resources for many crop species, including soybean (Glycine max). The development of new molecular platforms promises to accelerate the mapping of genetic introgressions in these materials. Here, we compare some existing and emerging methodologies for genetic introgression mapping: single-feature polymorphism analysis, Illumina GoldenGate single nucleotide polymorphism (SNP) genotyping, and de novo SNP discovery via RNA-Seq analysis of next-generation sequence data. We used these methods to map the introgressed regions in an iron-inefficient soybean NIL and found that the three mapping approaches are complementary when utilized in combination. The comparative RNA-Seq approach offers several additional advantages, including the greatest mapping resolution, marker depth, and de novo marker utility for downstream fine-mapping analysis. We applied the comparative RNA-Seq method to map genetic introgressions in an additional pair of NILs exhibiting differential seed protein content. Furthermore, we attempted to optimize the comparative RNA-Seq approach by assessing the impact of sequence depth, SNP identification methodology, and post hoc analyses on SNP discovery rates. We conclude that the comparative RNA-Seq approach can be optimized with sufficient sampling and by utilizing a post hoc correction accounting for gene density variation that controls for false discoveries.


Assuntos
Mapeamento Cromossômico/métodos , Genômica/métodos , Glycine max/genética , Endogamia , Cromossomos de Plantas/genética , Biblioteca Gênica , Genes de Plantas/genética , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes , Análise de Sequência de RNA
10.
BMC Genomics ; 11: 561, 2010 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-20939887

RESUMO

BACKGROUND: Mycobacterium avium subsp. paratuberculosis (MAP) persistently infects intestines and mesenteric lymph nodes leading to a prolonged subclinical disease. The MAP genome sequence was published in 2005, yet its transcriptional organization in natural infection is unknown. While prior research analyzed regulated gene sets utilizing defined, in vitro stress related or advanced surgical methods with various animal species, we investigated the intracellular lifestyle of MAP in the intestines and lymph nodes to understand the MAP pathways that function to govern this persistence. RESULTS: Our transcriptional analysis shows that 21%, 8% and 3% of the entire MAP genome was represented either inside tissues, macrophages or both, respectively. Transcripts belonging to latency and cell envelope biogenesis were upregulated in the intestinal tissues whereas those belonging to intracellular trafficking and secretion were upregulated inside the macrophages. Transcriptomes of natural infection and in vitro macrophage infection shared genes involved in transcription and inorganic ion transport and metabolism. MAP specific genes within large sequence polymorphisms of ancestral M. avium complex were downregulated exclusively in natural infection. CONCLUSIONS: We have unveiled common and unique MAP pathways associated with persistence, cell wall biogenesis and virulence in naturally infected cow intestines, lymph nodes and in vitro infected macrophages. This dichotomy also suggests that in vitro macrophage models may be insufficient in providing accurate information on the events that transpire during natural infection. This is the first report to examine the primary transcriptome of MAP at the local infection site (i.e. intestinal tissue). Regulatory pathways that govern the lifecycle of MAP appear to be specified by tissue and cell type. While tissues show a "shut-down" of major MAP metabolic genes, infected macrophages upregulate several MAP specific genes along with a putative pathogenicity island responsible for iron acquisition. Many of these regulatory pathways rely on the advanced interplay of host and pathogen and in order to decipher their message, an interactome must be established using a systems biology approach. Identified MAP pathways place current research into direct alignment in meeting the future challenge of creating a MAP-host interactome.


Assuntos
Perfilação da Expressão Gênica , Macrófagos/microbiologia , Mycobacterium avium subsp. paratuberculosis/genética , Transdução de Sinais/genética , Animais , Bioensaio , Bovinos , Análise por Conglomerados , Regulação da Expressão Gênica , Genes Bacterianos/genética , Macrófagos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos/genética , Paratuberculose/genética , Paratuberculose/microbiologia , Paratuberculose/patologia , Filogenia , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
BMC Plant Biol ; 10: 85, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20459672

RESUMO

BACKGROUND: Common bean (Phaseolus vulgaris L.) and soybean (Glycine max) both belong to the Phaseoleae tribe and share significant coding sequence homology. This suggests that the GeneChip(R) Soybean Genome Array (soybean GeneChip) may be used for gene expression studies using common bean. RESULTS: To evaluate the utility of the soybean GeneChip for transcript profiling of common bean, we hybridized cRNAs purified from nodule, leaf, and root of common bean and soybean in triplicate to the soybean GeneChip. Initial data analysis showed a decreased sensitivity and accuracy of measuring differential gene expression in common bean cross-species hybridization (CSH) GeneChip data compared to that of soybean. We employed a method that masked putative probes targeting inter-species variable (ISV) regions between common bean and soybean. A masking signal intensity threshold was selected that optimized both sensitivity and accuracy of measuring differential gene expression. After masking for ISV regions, the number of differentially-expressed genes identified in common bean was increased by 2.8-fold reflecting increased sensitivity. Quantitative RT-PCR (qRT-PCR) analysis of 20 randomly selected genes and purine-ureide pathway genes demonstrated an increased accuracy of measuring differential gene expression after masking for ISV regions. We also evaluated masked probe frequency per probe set to gain insight into the sequence divergence pattern between common bean and soybean. The sequence divergence pattern analysis suggested that the genes for basic cellular functions and metabolism were highly conserved between soybean and common bean. Additionally, our results show that some classes of genes, particularly those associated with environmental adaptation, are highly divergent. CONCLUSIONS: The soybean GeneChip is a suitable cross-species platform for transcript profiling in common bean when used in combination with the masking protocol described. In addition to transcript profiling, CSH of the GeneChip in combination with masking probes in the ISV regions can be used for comparative ecological and/or evolutionary genomics studies.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Phaseolus/genética , Hibridização Genômica Comparativa , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Família Multigênica , Sondas de Ácido Nucleico , Análise de Componente Principal , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Glycine max/genética
12.
BMC Plant Biol ; 10: 41, 2010 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-20199683

RESUMO

BACKGROUND: The nutritional and economic value of many crops is effectively a function of seed protein and oil content. Insight into the genetic and molecular control mechanisms involved in the deposition of these constituents in the developing seed is needed to guide crop improvement. A quantitative trait locus (QTL) on Linkage Group I (LG I) of soybean (Glycine max (L.) Merrill) has a striking effect on seed protein content. RESULTS: A soybean near-isogenic line (NIL) pair contrasting in seed protein and differing in an introgressed genomic segment containing the LG I protein QTL was used as a resource to demarcate the QTL region and to study variation in transcript abundance in developing seed. The LG I QTL region was delineated to less than 8.4 Mbp of genomic sequence on chromosome 20. Using Affymetrix Soy GeneChip and high-throughput Illumina whole transcriptome sequencing platforms, 13 genes displaying significant seed transcript accumulation differences between NILs were identified that mapped to the 8.4 Mbp LG I protein QTL region. CONCLUSIONS: This study identifies gene candidates at the LG I protein QTL for potential involvement in the regulation of protein content in the soybean seed. The results demonstrate the power of complementary approaches to characterize contrasting NILs and provide genome-wide transcriptome insight towards understanding seed biology and the soybean genome.


Assuntos
Genômica/métodos , Glycine max/genética , Locos de Características Quantitativas , Proteínas de Armazenamento de Sementes/genética , DNA de Plantas/genética , Perfilação da Expressão Gênica , Genoma de Planta , Análise de Sequência com Séries de Oligonucleotídeos , Mapeamento Físico do Cromossomo , Óleos de Plantas/análise , Polimorfismo Genético , Sementes/genética , Análise de Sequência de DNA
13.
BMC Plant Biol ; 9: 92, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19604393

RESUMO

BACKGROUND: Many flowering plants attract pollinators by offering a reward of floral nectar. Remarkably, the molecular events involved in the development of nectaries, the organs that produce nectar, as well as the synthesis and secretion of nectar itself, are poorly understood. Indeed, to date, no genes have been shown to directly affect the de novo production or quality of floral nectar. To address this gap in knowledge, the ATH1 Affymetrix GeneChip array was used to systematically investigate the Arabidopsis nectary transcriptome to identify genes and pathways potentially involved in nectar production. RESULTS: In this study, we identified a large number of genes differentially expressed between secretory lateral nectaries and non-secretory median nectary tissues, as well as between mature lateral nectaries (post-anthesis) and immature lateral nectaries (pre-anthesis). Expression within nectaries was also compared to thirteen non-nectary reference tissues, from which 270 genes were identified as being significantly upregulated in nectaries. The expression patterns of 14 nectary-enriched genes were also confirmed via RT PCR. Upon looking into functional groups of upregulated genes, pathways involved in gene regulation, carbohydrate metabolism, and lipid metabolism were particularly enriched in nectaries versus reference tissues. CONCLUSION: A large number of genes preferentially expressed in nectaries, as well as between nectary types and developmental stages, were identified. Several hypotheses relating to mechanisms of nectar production and regulation thereof are proposed, and provide a starting point for reverse genetics approaches to determine molecular mechanisms underlying nectar synthesis and secretion.


Assuntos
Arabidopsis/genética , Flores/genética , Perfilação da Expressão Gênica , Arabidopsis/metabolismo , Análise por Conglomerados , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , RNA de Plantas/genética
14.
Mol Plant Microbe Interact ; 21(12): 1515-27, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18986248

RESUMO

The wheat gene Lr34 confers partial resistance to all races of Puccinia triticina, the causal agent of wheat leaf rust. However, the biological basis for the exceptional durability of Lr34 is unclear. We used the Affymetrix GeneChip Wheat Genome Array to compare transcriptional changes of near-isogenic lines of Thatcher wheat in a compatible interaction, an incompatible interaction conferred by the resistance gene Lr1, and the race-nonspecific response conditioned by Lr34 3 and 7 days postinoculation (dpi) with P. triticina. No differentially expressed genes were detected in Lr1 plants at either timepoint whereas, in the compatible Thatcher interaction, differentially expressed genes were detected only at 7 dpi. In contrast, differentially expressed genes were identified at both timepoints in P. triticina-inoculated Lr34 plants. At 3 dpi, upregulated genes associated with Lr34-mediated resistance encoded various defense and stress-related proteins, secondary metabolism enzymes, and transcriptional regulation and cellular-signaling proteins. Further, coordinated upregulation of key genes in several metabolic pathways that can contribute to increased carbon flux through the tricarboxylic cycle was detected. This indicates that Lr34-mediated resistance imposes a high energetic demand that leads to the induction of multiple metabolic responses to support cellular energy requirements. These metabolic responses were not sustained through 7 dpi, and may explain why Lr34 fails to inhibit the pathogen fully but does increase the latent period.


Assuntos
Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/genética , Triticum/metabolismo , Basidiomycota/patogenicidade , Ciclo do Ácido Cítrico , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Genótipo , Imunidade Inata/genética , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , RNA de Plantas/genética , Fatores de Tempo , Triticum/microbiologia
15.
PLoS One ; 5(1): e8782, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-20098697

RESUMO

BACKGROUND: Nectaries are the floral organs responsible for the synthesis and secretion of nectar. Despite their central roles in pollination biology, very little is understood about the molecular mechanisms underlying nectar production. This project was undertaken to identify genes potentially involved in mediating nectary form and function in Brassica rapa. METHODOLOGY AND PRINCIPAL FINDINGS: Four cDNA libraries were created using RNA isolated from the median and lateral nectaries of B. rapa flowers, with one normalized and one non-normalized library being generated from each tissue. Approximately 3,000 clones from each library were randomly sequenced from the 5' end to generate a total of 11,101 high quality expressed sequence tags (ESTs). Sequence assembly of all ESTs together allowed the identification of 1,453 contigs and 4,403 singleton sequences, with the Basic Localized Alignment Search Tool (BLAST) being used to identify 4,138 presumptive orthologs to Arabidopsis thaliana genes. Several genes differentially expressed between median and lateral nectaries were initially identified based upon the number of BLAST hits represented by independent ESTs, and later confirmed via reverse transcription polymerase chain reaction (RT PCR). RT PCR was also used to verify the expression patterns of eight putative orthologs to known Arabidopsis nectary-enriched genes. CONCLUSIONS/SIGNIFICANCE: This work provided a snapshot of gene expression in actively secreting B. rapa nectaries, and also allowed the identification of differential gene expression between median and lateral nectaries. Moreover, 207 orthologs to known nectary-enriched genes from Arabidopsis were identified through this analysis. The results suggest that genes involved in nectar production are conserved amongst the Brassicaceae, and also supply clones and sequence information that can be used to probe nectary function in B. rapa.


Assuntos
Brassica rapa/genética , Etiquetas de Sequências Expressas , Expressão Gênica , Genes de Plantas , Brassica rapa/fisiologia , DNA Complementar , Fotossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA