Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diabet Med ; : e15386, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38887963

RESUMO

AIM: Impaired wound healing in patients with diabetes can develop into nonhealing ulcerations. Because bone marrow mesenchymal stem cells (BMSCs) exosomes can promote wound healing, this study aims to investigate the mechanism of BMSCs-isolated exosomal miR-221-3p in angiogenesis and diabetic wound healing. METHODS: To mimic diabetes in vitro, human umbilical vein endothelial cells (HUVECs) were subjected to high glucose (HG). Exosomes were derived from BMSCs and identified by transmission electron microscopy (TEM), western blot analysis and dynamic light scattering (DLS). The ability to differentiate BMSCs was assessed via Oil red O staining, alkaline phosphatase (ALP) staining and alizarin red staining. The ability to internalise PKH26-labelled exosomes was assessed using confocal microscopy. Migration, cell viability and angiogenesis were tested by scratch, MTT and tube formation assays separately. The miRNA and protein levels were analysed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) or western blotting. The relationship among miR-221-3p, FOXP1 and SPRY1 was determined using the dual-luciferase reporter, ChIP and RIP assays. RESULTS: Exosomal miR-221-3p was successfully isolated from BMSCs and delivered into HUVECs. HG was found to suppress the angiogenesis, cell viability and migration of HUVECs and exosomal miR-221-3p separated from BMSCs inhibited the above phenomenon. FOXP1 could transcriptionally upregulate SPRY1, and the silencing of FOXP1 reversed the HG-stimulated angiogenesis inhibition, cell viability and migration in HUVECs via the downregulation of SPRY1. Meanwhile, miR-221-3p directly targeted FOXP1 and the overexpression of FOXP1 reversed the positive effect of exosomal miR-221-3p on HUVEC angiogenesis. CONCLUSION: Exosomal miR-221-3p isolated from BMSCs promoted angiogenesis in diabetic wounds through the mediation of the FOXP1/SPRY1 axis. Furthermore, the findings of this study can provide new insights into probing strategies against diabetes.

2.
Phys Chem Chem Phys ; 26(2): 662-678, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38112019

RESUMO

The photocatalytic performance of nano-TiO2 photocatalysts in air pollutant degradation greatly depends on the adsorption of water, substrates, and intermediates. Especially under excessive humidity, substrate concentration, and intermediate concentration, the competitive adsorption of water, substrates, and intermediates can seriously inhibit the photocatalytic performance. In the past few years, extensive studies have been performed to investigate the influence of humidity, substrate concentration, and intermediates on the photocatalytic performance of TiO2, and significant advances have been made in the area. However, to the best of our knowledge, there is no review focusing on the effects of water, substrate, and intermediate adsorption to date. A comprehensive understanding of their mechanisms is key to overcoming the limited application of nano-TiO2 photocatalysts in the photocatalytic decomposition of air pollutants. In this review, the progress in experimental and theoretical fields, including a recent combination of photocatalytic experiments and adsorption and photocatalytic simulations by density functional theory (DFT), to explore the impact of adsorption of various reaction components on nano-TiO2 photocatalysts is comprehensively summarized. Additionally, the mechanism and broad perspective of the impact of their adsorption on the photocatalytic activity of TiO2 in air treatment are also critically discussed. Finally, several solutions are proposed to resolve the current problems related to environmental factors. In general, this review contributes a comprehensive perspective of water, substrate, and intermediate adsorption toward boosting the photocatalytic application of TiO2 nanomaterials.

3.
J Am Chem Soc ; 145(28): 15528-15537, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37429887

RESUMO

Demetalation, caused by the electrochemical dissolution of metal atoms, poses a significant challenge to the practical application of single-atom catalytic sites (SACSs) in proton exchange membrane-based energy technologies. One promising approach to inhibit SACS demetalation is the use of metallic particles to interact with SACSs. However, the mechanism underlying this stabilization remains unclear. In this study, we propose and validate a unified mechanism by which metal particles can inhibit the demetalation of Fe SACSs. Metal particles act as electron donors, decreasing the Fe oxidation state by increasing the electron density at the FeN4 position, thereby strengthening the Fe-N bond, and inhibiting electrochemical Fe dissolution. Different types, forms, and contents of metal particles increase the Fe-N bond strength to varying extents. A linear correlation between the Fe oxidation state, Fe-N bond strength, and electrochemical Fe dissolution amount supports this mechanism. Our screening of a particle-assisted Fe SACS led to a 78% reduction in Fe dissolution, enabling continuous operation for up to 430 h in a fuel cell. These findings contribute to the development of stable SACSs for energy applications.

4.
J Med Virol ; 95(6): e28879, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37314050

RESUMO

Serum samples were collected from 54 hepatitis B e antigen (HBeAg)-positive Chinese patients infected with hepatitis B virus (HBV) subgenotype B2 or C2. They were compared for transmission efficiency using same volume of samples or infectivity using same genome copy number. Adding polyethylene glycol (PEG) during inoculation did not increase infectivity of fresh samples but markedly increased infectivity following prolonged sample storage. Differentiated HepaRG cells infected without PEG produced more hepatitis B surface antigen (HBsAg) and higher HBsAg/HBeAg ratio than sodium taurocholate cotransporting polypeptide (NTCP)-reconstituted HepG2 cells infected with PEG. They better supported replication of core promoter mutant in contrast to wild-type (WT) virus by HepG2/NTCP cells. Overall, subgenotype C2 samples had higher viral load than B2 samples, and in general produced more HBeAg, HBsAg, and replicative DNA following same-volume inoculation. Precore mutant was more prevalent in subgenotype B2 and had reduced transmission efficiency. When same genome copy number of viral particles was inoculated, viral signals were not necessarily higher for three WT C2 isolates than four WT B2 isolates. Using viral particles generated from cloned HBV genome, three WT C2 isolates showed slightly reduced infectivity than three B2 isolates. In conclusion, subgenotype C2 serum samples had higher transmission efficiency than B2 isolates in association with higher viral load and lower prevalence of precore mutant, but not necessarily higher infectivity. PEG-independent infection by HBV viremic serum samples is probably attributed to a labile host factor.


Assuntos
Antígenos de Superfície da Hepatite B , Antígenos E da Hepatite B , Vírus da Hepatite B , Hepatite B , Humanos , Genótipo , Antígenos E da Hepatite B/sangue , Antígenos de Superfície da Hepatite B/sangue , Vírus da Hepatite B/genética , Polietilenoglicóis , População do Leste Asiático , Hepatite B/transmissão , Hepatite B/virologia , Células Hep G2
5.
Environ Res ; 229: 115993, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37105289

RESUMO

To enhance the catalytic activity of carbon materials and streamline their synthesis process, it is necessary to optimize the doping of heteroatoms and reduce the dependence on organic solvents. This can be achieved by utilizing carbonized Polypyrrole-Polythiophene (C(Ppy-Pth)), which is obtained through simultaneous and in-situ co-doping of N and S. This material can serve as an effective activator of peroxydisulfate (PDS) for the degradation of aniline (AN). The results showed that Ppy-Pth could be efficiently synthesized by using cetyltrimethyl ammonium bromide, pyrrole, thiophene, FeCl3, and H2O2 in water. Based on the price, self-decomposition and oxidation efficiency, the performance of PDS activated by C(Ppy-Pth) was superior to that of peroxymonosulfate (PMS) in degrading AN. The optimum conditions for catalyzing PDS and degrading 30 mg/L AN by C(Ppy-Pth) were 0.10 g/L C(Ppy-Pth)-1000-1/1, 2.10 mM PDS, and pH0 = 3.00, which resulted in 86.69% AN removal in 30 min. Carbonation temperature, N/S ratio and pyridine N content are the key factors affecting the catalytic activity of C(Ppy-Pth). Quenching, probe, and electrochemical experiment revealed that in the catalytic PDS system with C(Ppy-Pth)-1000-1/1 (pH0 = 3.00), the oxidation of AN mainly occurred through the generation of hydroxyl radical (·OH), superoxide anion (O2·-), and electron transfer on the C(Ppy-Pth)-1000-1/1 surface. The steady-state concentration of ·OH and O2·- were 2.65 × 10-14 M and 1.97 × 10-13 M, respectively, and the contribution rate of ·OH oxidation was 31.28%. The oxidation of AN by sulfate radical (SO4·-) and singlet oxygen (1O2) could be neglected. This study provides a promising strategy for the construction of PDS catalyst and wastewater treatment.


Assuntos
Carbono , Polímeros , Carbono/química , Peróxido de Hidrogênio , Pirróis , Nitrogênio , Porosidade , Tiofenos , Enxofre , Compostos de Anilina
6.
Environ Res ; 214(Pt 4): 114189, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36030911

RESUMO

Novel modified-TiO2/Zr-doped SiO2/g-C3N4 ternary composite is fabricated via an in-situ grow of porous Zr-SiO2 layer to TiO2/g-C3N4 heterojunction, which exhibits well adsorption-photocatalytic performance under simulated solar light irradiation. The nano-size mesoporous TiO2 are dispersed on the lamellar g-C3N4, and the Zr-SiO2 is in-situ fabricated onto the surface of g-C3N4 sheets. The adsorption occurs on the SiO2 layers, and doping Zr element to SiO2 enhances the adsorption of pollutants, while the photocatalytic reaction occurs on the valence band (VB) of TiO2 and conduction band (CB) of g-C3N4, which gives reactive oxygen species of ∙O2-, h+, and ∙OH for high efficient decomposition of antibiotics, i.e. berberine hydrochloride (98.11%), tetracycline (80.76%), and oxytetracycline (84.84%). The excellent adsorption capacity and Z-scheme photoinduced charge carrier migration behavior endowed the novel material with enhanced berberine hydrochloride (BH) removal in water, which approximately 2.5 and 3.8 folds than that of pure g-C3N4 and sole TiO2, respectively. Three degradation pathways are unraveled by LC-MS and theoretical calculations. Furthermore, the toxicity of intermediates was evaluated by the Toxicity Estimation Software Tool (T.E.S.T.), the result demonstrated a good application potential of M-TiO2/Zr-SiO2/g-C3N4 as an novel adsorptive photocatalyst.


Assuntos
Berberina , Dióxido de Silício , Adsorção , Antibacterianos , Catálise , Luz , Titânio
7.
Anal Bioanal Chem ; 411(11): 2439-2445, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30810789

RESUMO

Here, we report an ultrasensitive colorimetric method for determination of Ag+ based on gold nanoparticle (AuNP) oligomers with dark-field microscopy. In a proof-of-concept trial, two cytosine-rich (C-rich) aptamers as the sensing elements and AuNPs as the transducer to produce the detectable signal are designed for Ag+ determination. Obviously, the C bases in the two aptamers play a crucial role in the coordination of highly specific C-Ag+-C. Through a specific C-Ag+-C coordination, one aptamer immobilized on the surface of AuNPs sitting on a glass slide hybridizes with the other aptamer in the solution, which triggers the formation of AuNP oligomers. The formation of plasmonic oligomers results in an obvious increase in the number of yellow and red spots in dark-field images, further leading to a significantly enhanced scattering intensity. By measuring the intensity change of AuNP oligomers in the dark-field images, the concentration of Ag+ can be readily determined. The limits of detection (LODs) of 0.246 pM and 0.388 pM in solution and river water sample were obtained, respectively. This ultrasensitive colorimetric approach could be extended to probe Hg2+ via T-Hg2+-T coordination in environmental samples.

8.
BMC Vet Res ; 15(1): 244, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307451

RESUMO

BACKGROUND: Porcine circovirus type 3 (PCV3) was first reported in US in 2016. The virus was also identified later in China. Prevalence of PCV3 in Zhejiang province in southeastern China is not clear though it has been reported in many parts of China. RESULTS: PCV3 infection and its co-infection with other swine viral pathogens in pig herds of Zhejiang province were retrospectively investigated by quantitative PCR (qPCR) and its sero-prevalence by indirect ELISA. PCV3 was found positive in 67.1% of the 283 clinical samples taken from 2014 to 2017 as shown by qPCR. Single infection with PCV3 accounted for only one-third of the samples, and majority were of co-infections, predominantly with PEDV (41.6%) but generally low with other swine viruses. Indirect ELISA using the PCV3 capsid protein as the coating antigen revealed an average sero-positive rate of 52.6% (40.8 to 60.8%) in 2345 serum samples from 2011 to 2017, with earliest yet high positive findings in samples taken in 2012. Of 203 serum samples, the qPCR method showed more positive findings than ELISA (81.3% vs 56.2%). With 89 serum samples negative by ELISA, vast majority (n = 81) were found positive by qPCR. There was negative correlation in levels of PCV3 DNA and anti-capsid antibody response. ORF2-based phylogenetic analysis revealed three major groups (PCV3a, PCV3b and PCV3c) of the 200 strains, 38 from this study and 162 reference strains from GenBank. Most of the strains from this study were clustered into PCV3c. Of the putative signature residues of the capsid protein (aa 24, 27, 77 and 150) relative to the three groups, only the PCV3a group strains showed a distinct pattern of residues VKSI (95% of the strains), while the other two groups did not have such a 'signature' pattern. CONCLUSIONS: Results from this study provided further evidence that the novel virus PCV3 was widely distributed in China and might have emerged in Zhejiang province before 2014, most probably back in 2012 when there was high PCV3 sero-prevalence. PCV3 might be viremic in pigs and could spread by fecal shedding.


Assuntos
Infecções por Circoviridae/veterinária , Circovirus/isolamento & purificação , Doenças dos Suínos/virologia , Animais , China/epidemiologia , Infecções por Circoviridae/epidemiologia , Circovirus/classificação , Circovirus/genética , Coinfecção/veterinária , Ensaio de Imunoadsorção Enzimática/veterinária , Filogenia , Prevalência , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Estudos Retrospectivos , Estudos Soroepidemiológicos , Suínos , Doenças dos Suínos/epidemiologia
9.
J Environ Sci (China) ; 67: 171-178, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29778150

RESUMO

A modified Hummer's method was adopted for the synthesis of graphene oxide (GO) and reduced graphene oxide (rGO). It was revealed that the modified method is effective for the production of GO and rGO from graphite. Transmission electron microscopy (TEM) images of GO and rGO showed a sheet-like morphology. Because of the presence of oxygenated functional groups on the carbon surface, the interlayer spacing of the prepared GO was higher than that of rGO. The presence of OH and CO groups in the Fourier transform infrared spectra (FTIR) spectrum and G-mode and 2D-mode in Raman spectra confirmed the synthesis of GO and rGO. rGO (292.6m2/g) showed higher surface area than that of GO (236.4m2/g). The prepared rGO was used as an adsorbent for benzene and toluene (model pollutants of volatile organic compounds (VOCs)) under dynamic adsorption/desorption conditions. rGO showed higher adsorption capacity and breakthrough times than GO. The adsorption capacity of rGO for benzene and toluene was 276.4 and 304.4mg/g, respectively. Desorption experiments showed that the spent rGO can be successfully regenerated by heating at 150.0°C. Its excellent adsorption/desorption performance for benzene and toluene makes rGO a potential adsorbent for VOC adsorption.


Assuntos
Grafite/química , Modelos Químicos , Compostos Orgânicos Voláteis/química , Adsorção , Grafite/análise , Compostos Orgânicos Voláteis/análise
10.
Bioelectromagnetics ; 38(3): 204-212, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28106913

RESUMO

To explore the possible efficacy of electromagnetic fields (EMF) for skin tissue engineering, effects of EMF exposure on epidermal stem cells (ESC) seeded in collagen sponge scaffolds for wound healing in a murine model were investigated. The wound models of a full-thickness defect established with 36 7 ∼ 8-week-old nude mice were randomly divided into three groups: a control group, an ESC-only group, and an ESC with EMF exposure group (frequency of 50 Hz, magnetic induction of 5 mT, 60 min per day for 20 days). ESC were separated from human foreskin and cultured in vitro, and then transplanted with collagen sponge scaffolds as a delivery vehicle to wounds of the ESC-only group, and ESC with EMF exposure group was exposed to EMF after ESC transplantation. Effects of EMF on morphological changes and expression of ß1 integrin in regenerated skins were observed. Wound healing rates and healing times were collected to evaluate the efficacy of repairment. Results showed that human ESC were successfully transplanted to nude mice, which facilitated the formation of intact skin on nude mice. In contrast to other groups, the wound healing of ESC with EMF exposure group was the fastest (P < 0.05), the structure of regenerated skins was more mature, and it contained more continuity in the number of viable cell layers and rich hair follicles' structure. These results suggest that the use of 50 Hz EMF as a non-invasive treatment can accelerate wound healing of ESC transplantation, and restore structural integrity of regenerated skin. Bioelectromagnetics. 38:204-212,2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Campos Eletromagnéticos , Células Epidérmicas , Transplante de Células-Tronco/métodos , Alicerces Teciduais , Cicatrização/fisiologia , Animais , Materiais Biomiméticos , Técnicas de Cultura de Células , Colágeno Tipo I , Humanos , Masculino , Camundongos Nus , Células-Tronco/citologia , Células-Tronco/metabolismo , Engenharia Tecidual/métodos
12.
ScientificWorldJournal ; 2014: 647040, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24558321

RESUMO

This study was conducted to synthesize a series of nanosized BiOI-TiO2 catalysts to photodegrade Bisphenol A solution. The BiOI-TiO2 nanoparticles were synthesized in the reverse microemulsions, consisting of cyclohexane, Triton X-100, n-hexanol, and aqueous salt solutions. The synthesized particles were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface analyzer, Fourier transform-infrared spectroscopy (FT-IR), ultraviolet-visible light (UV-Vis) absorption spectra and transmission electron microscope (TEM). The photodegradation of Bisphenol A (BPA) in aqueous suspension under visible light irradiation was investigated to explore the feasibility of using the photocatalytic method to treat BPA wastewater. The effects of different molar ratios of BiOI to TiO2 on the photocatalytic activity were discussed. The experimental results revealed that the photocatalytic effect of the BiOI-TiO2 particles was superior to the commercial P25 TiO2. The BPA degradation could be approached by a pseudo-first-order rate expression. The observed reaction rate constant (kobs) was related to nanoparticles dosage and initial solution pH.


Assuntos
Bismuto/química , Técnicas de Química Sintética/métodos , Nanopartículas Metálicas/química , Fotoquímica/métodos , Titânio/química , Catálise , Emulsões , Difração de Raios X/métodos
13.
Zhongguo Zhong Yao Za Zhi ; 39(5): 765-8, 2014 Mar.
Artigo em Zh | MEDLINE | ID: mdl-25204162

RESUMO

Edema, as one of common clinical diseases, could be treated by taking medicines and adopting external therapies with traditional Chinese medicines (TCM). In recent years, there have been many clinical and basic studies concerning external therapies with TCM on edema Data showed that the external therapies are mostly composed of such purgating drugs as Rhei Radix et Rhizoma, Natrii Sulfas and Pharbitidis Semen, heat-clearing drug such as Phellodendri Chinensis Cortex and resuscitation-inducing drug such as Borneolum Syntheticum. The study showed that ingredients of external therapies did not pass through hilum and hepatic system, and thus avoided the first pass effect of livers. They enabled effective components of drugs to be rapidly absorbed through pores and skins, strengthened the effect against edema, shortened the treatment course, decreased side effects, and were convenient and inexpensive. External therapies with TCM could play unique advantages in inhibiting edema in the future clinical studies.


Assuntos
Medicamentos de Ervas Chinesas/administração & dosagem , Edema/tratamento farmacológico , Animais , Humanos
14.
Hum Cell ; 37(3): 752-767, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38536633

RESUMO

In recent years, abnormal m6A alteration in hepatocellular carcinoma (HCC) has been a focus on investigating the biological implications. In this study, our objective is to determine whether m6A modification contributes to the progression of HBV-related HCC. To achieve this, we employed a random forest model to screen top 8 characteristic m6A regulators from 19 candidate genes. Subsequently, we developed a nomogram model that utilizes these 8 characteristic m6A regulators to predict the prevalence of HBV-related HCC. According to decision curve analysis, patients may benefit from the nomogram model. The clinical impact curves exhibited a robust predictive capability of the nomogram models. Additionally, consensus molecular subtyping was employed to identify m6A modification patterns and m6A-related gene signature. The quantification of immune cell subsets was accomplished through the implementation of ssGSEA algorithms. PCA algorithms were developed to compute the m6A score for individual tumors. Two distinct m6A modification patterns, namely cluster A and cluster B, exhibited significant correlations with distinct immune infiltration patterns and biological pathways. Notably, patients belonging to cluster B demonstrated higher m6A scores compared to those in cluster A, as determined by the m6A score metric. Furthermore, the expression of IGFBP3 proteins was validated through immunofluorescence, revealing their pronounced lower expression in tumor tissues. In summary, our study underscores the importance of m6A modification in the advancement of HBV-related HCC. This research has the potential to yield novel prognostic biomarkers and therapeutic targets for the identification of HBV-related HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Vírus da Hepatite B/genética , Metilação de RNA , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Algoritmos
15.
Sci Rep ; 14(1): 4352, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388661

RESUMO

Gastric cancer (GC), known for its high incidence and poor prognosis, urgently necessitates the identification of reliable prognostic biomarkers to enhance patient outcomes. We scrutinized data from 375 GC patients alongside 32 non-cancer controls, sourced from the TCGA database. A univariate Cox Proportional Hazards Model (COX) regression was employed to evaluate expressions of ferroptosis-related genes. This was followed by the application of Least Absolute Shrinkage and Selection Operator (LASSO) and multivariate COX regression for the development of prognostic models. The composition of immune cell subtypes was quantified utilizing CIBERSORT, with their distribution in GC versus control samples being comparatively analyzed. Furthermore, the correlation between the expressions of Cystathionine Gamma-Lyase (CTH) and Microtubule Associated Protein 1 Light Chain 3 Beta (MAP1LC3B) and the abundance of immune cell subtypes was explored. Our bioinformatics findings underwent validation through immunohistochemical analysis. Our prognostic models integrated CTH and MAP1LC3B. Survival analysis indicated that patients categorized as high-risk, as defined by the model, exhibited significantly lower survival rates compared to their low-risk counterparts. Notably, CTH expression inversely correlated with monocyte levels, while MAP1LC3B expression showed an inverse relationship with the abundance of M2 macrophages. Immunohistochemical validation corroborated lower expressions of CTH and MAP1LC3B in GC tissues relative to control samples, in concordance with our bioinformatics predictions. Our study suggests that the dysregulation of CTH, MAP1LC3B, and the accompanying monocyte-macrophage dynamics could be pivotal in the prognosis of GC. These elements present potential targets for prognostic assessment and therapeutic intervention.


Assuntos
Ferroptose , Neoplasias Gástricas , Humanos , Biomarcadores , Cistationina gama-Liase/metabolismo , Proteínas Associadas aos Microtúbulos , Prognóstico , Neoplasias Gástricas/genética
16.
Viruses ; 16(4)2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675986

RESUMO

Porcine circovirus type 2 (PCV2) infection can cause immunosuppressive diseases in pigs. Vascular endothelial cells (VECs), as the target cells for PCV2, play an important role in the immune response and inflammatory regulation. Endothelial IL-8, which is produced by porcine hip artery endothelial cells (PIECs) infected with PCV2, can inhibit the maturation of monocyte-derived dendritic cells (MoDCs). Here, we established a co-culture system of MoDCs and different groups of PIECs to further investigate the PCV2-induced endothelial IL-8 signaling pathway that drives the inhibition of MoDC maturation. The differentially expressed genes related to MoDC maturation were mainly enriched in the NF-κB and JAK2-STAT3 signaling pathways. Both the NF-κB related factor RELA and JAK2-STAT3 signaling pathway related factors (IL2RA, JAK, STAT2, STAT5, IL23A, IL7, etc.) decreased significantly in the IL-8 up-regulated group, and increased significantly in the down-regulated group. The expression of NF-κB p65 in the IL-8 up-regulated group was reduced significantly, and the expression of IκBα was increased significantly. Nuclear translocation of NF-κB p65 was inhibited, while the nuclear translocation of p-STAT3 was increased in MoDCs in the PCV2-induced endothelial IL-8 group. The results of treatment with NF-κB signaling pathway inhibitors showed that the maturation of MoDCs was inhibited and the expression of IL-12 and GM-CSF at mRNA level were lower. Inhibition of the JAK2-STAT3 signaling pathway had no significant effect on maturation, and the expression of IL-12 and GM-CSF at mRNA level produced no significant change. In summary, the NF-κB signaling pathway is the main signaling pathway of MoDC maturation, and is inhibited by the PCV2-induced up-regulation of endothelial-derived IL-8.


Assuntos
Circovirus , Interleucina-8 , Transdução de Sinais , Doenças dos Suínos , Animais , Diferenciação Celular , Células Cultivadas , Infecções por Circoviridae/virologia , Infecções por Circoviridae/imunologia , Infecções por Circoviridae/veterinária , Circovirus/fisiologia , Circovirus/imunologia , Técnicas de Cocultura , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Endoteliais/virologia , Células Endoteliais/metabolismo , Interleucina-8/metabolismo , Interleucina-8/genética , NF-kappa B/metabolismo , Suínos , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/metabolismo
17.
Cell Mol Gastroenterol Hepatol ; 17(2): 199-217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37926366

RESUMO

BACKGROUND & AIMS: The function of cholinergic anti-inflammatory pathway (CAP) in acute liver failure (ALF) with inflammatory storm remains indefinite. The liver-gut axis has been proved to be crucial for liver homeostasis. Investigation about CAP regulation on liver-gut axis would enrich our understanding over cholinergic anti-inflammatory mechanism. METHODS: Co-injection of lipopolysaccharide and D-galactosamine was used to establish the model of ALF. PNU-282987 was used to activate the CAP. Histological staining, real-time polymerase chain reaction, Western blotting, RNA sequencing, and flow cytometry were conducted. Liver biopsy specimens and patients' serum from patients with liver failure were also analyzed. RESULTS: We confirmed that activating the CAP alleviated hepatocyte destruction, accompanied by a significant decrease in hepatocyte apoptosis, pro-inflammatory cytokines, and NLRP3 inflammasome activation. Moreover, hepatic MAdCAM1 and serum MAdCAM1 levels were induced in ALF, and MAdCAM1 levels were positively correlated with the extent of liver damage and the expression of pro-inflammatory markers. Furthermore, activating the CAP mainly downregulated ectopic expression of MAdCAM1 on endothelial cells, and inhibition of NF-κB p65 nuclear translocation was partly attributed to the decreased MAdCAM1. Notably, in ALF, the aberrant hepatic expression of MAdCAM1 subsequently recruited gut-derived α4ß7+ CD4+T cells to the liver, which exhibited an augmented IFN-γ-secreting and IL-17-producing phenotype. Finally, we revealed that the levels of serum and hepatic MAdCAM1 were elevated in patients with liver failure and closely correlated with clinical course. Increasing hepatic infiltration of ß7+ cells were also confirmed in patients. CONCLUSIONS: Activating the CAP attenuated liver injury by inhibiting MAdCAM1/α4ß7 -mediated gut-derived proinflammatory lymphocytes infiltration, which provides a potential therapeutic target for ALF.


Assuntos
Falência Hepática Aguda , Neuroimunomodulação , Humanos , Células Endoteliais/patologia , Falência Hepática Aguda/metabolismo , Linfócitos/metabolismo
18.
Sci Rep ; 14(1): 4318, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383657

RESUMO

The principal aim of this investigation is to identify pivotal biomarkers linked to the prognosis of osteosarcoma (OS) through the application of artificial intelligence (AI), with an ultimate goal to enhance prognostic prediction. Expression profiles from 88 OS cases and 396 normal samples were procured from accessible public databases. Prognostic models were established using univariate COX regression analysis and an array of AI methodologies including the XGB method, RF method, GLM method, SVM method, and LASSO regression analysis. Multivariate COX regression analysis was also employed. Immune cell variations in OS were examined using the CIBERSORT software, and a differential analysis was conducted. Routine blood data from 20,679 normal samples and 437 OS cases were analyzed to validate lymphocyte disparity. Histological assessments of the study's postulates were performed through immunohistochemistry and hematoxylin and eosin (HE) staining. AI facilitated the identification of differentially expressed genes, which were utilized to construct a prognostic model. This model discerned that the survival rate in the high-risk category was significantly inferior compared to the low-risk cohort (p < 0.05). SERPINE2 was found to be positively associated with memory B cells, while CPT1B correlated positively with CD8 T cells. Immunohistochemical assessments indicated that SERPINE2 was more prominently expressed in OS tissues relative to adjacent non-tumorous tissues. Conversely, CPT1B expression was elevated in the adjacent non-tumorous tissues compared to OS tissues. Lymphocyte counts from routine blood evaluations exhibited marked differences between normal and OS groups (p < 0.001). The study highlights SERPINE2 and CPT1B as crucial biomarkers for OS prognosis and suggests that dysregulation of lymphocytes plays a significant role in OS pathogenesis. Both SERPINE2 and CPT1B have potential utility as prognostic biomarkers for OS.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Prognóstico , Serpina E2 , Inteligência Artificial , Biomarcadores , Osteossarcoma/diagnóstico , Carnitina O-Palmitoiltransferase
19.
Cytotherapy ; 15(8): 961-70, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23602580

RESUMO

BACKGROUND AIMS: Research results have shown that bone mesenchymal stromal cells (BMSC) can different into neural cells. Electromagnetic fields (EMF) play a role in regulating cell proliferation and differentiation, but the mechanisms behind this are unknown. In the present study, we explored the efficacy of EMF on the induction of rat BMSC differentiation into neurons in vitro. METHODS: First, rat BMSC were induced in a nerve cell culture environment and divided into three groups: an EMF induction treatment group (frequency of 50 Hz, magnetic induction of 5 mT, 60 min per day for 12 days), an induction-only group and a control group. Second, we observed cell phenotypes in a confocal microscope, tested gene expression through the use of reverse transcriptase-polymerase chain reaction, and detected postsynaptic currents by means of a cell patch-clamp. We analyzed the cell cycles and the portion of cells expressing neural cell markers with the use of flow cytometry. RESULTS: The results indicated that EMF can facilitate BMSC differentiation into neural cells, which expressed neuronal-specific markers and genes; they formed synaptic junctions and pulsed excitatory postsynaptic currents. At the same time, the G0-G1 phase ratio recorded by means of flow cytometry gradually decreased under the EMF treatment, whereas there was an increase of S-phase ratio, and the portion of cells expressing neuronal-specific markers increased. CONCLUSIONS: Given that a noninvasive treatment of 50-Hz EMF could significantly facilitate BMSC to differentiate into functional neurons, EMF appears to be a promising clinical option for stem cell transplantation therapies to combat central nervous system diseases.


Assuntos
Doenças do Sistema Nervoso Central/terapia , Campos Eletromagnéticos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos da radiação , Neurogênese/efeitos da radiação , Neurônios/citologia , Animais , Células da Medula Óssea/efeitos da radiação , Ciclo Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células Cultivadas , Feminino , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
20.
Bioelectromagnetics ; 34(1): 74-80, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22926783

RESUMO

To investigate the effects of low frequency electromagnetic fields (EMF) on the proliferation of epidermal stem cells, human epidermal stem cells (hESC) were isolated, expanded ex vivo, and then exposed to a low frequency EMF. The test and control cells were placed under the same environment. The test cells were exposed for 30 min/day to a 5 mT low frequency EMF at 1, 10, and 50 Hz for 3, 5, or 7 days. The effects of low frequency EMF on cell proliferation, cell cycle, and cell-surface antigen phenotype were investigated. Low frequency EMF significantly enhanced the proliferation of hESC in the culture medium in a frequency-dependent manner, with the highest cell proliferation rate at 50 Hz (P < 0.05). Exposure to a low frequency EMF significantly increased the percentage of cells at the S phase of the cell cycle, coupled with a decrease in the percentage of cells in the G1 phase (P < 0.05) but the effect was not frequency dependent. The percentage of CD29(+) /CD71(-) cells remained unchanged in the low frequency EMF-exposed hESC. The results suggested that low frequency EMF influenced hESC proliferation in vitro, and this effect was related to the increased proportion of cells at the S phase.


Assuntos
Campos Eletromagnéticos/efeitos adversos , Células Epidérmicas , Células-Tronco/citologia , Células-Tronco/efeitos da radiação , Adolescente , Biomarcadores/metabolismo , Ciclo Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Criança , Humanos , Masculino , Células-Tronco/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA