Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Small ; 20(12): e2307843, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37948442

RESUMO

Covalent organic frameworks (COFs) with flexible periodic skeletons and ordered nanoporous structures have attracted much attention as potential candidate electrode materials for green energy storage and efficient seawater desalination. Further improving the intrinsic electronic conductivity and releasing porosity of COF-based materials is a necessary strategy to improve their electrochemical performance. Herein, the employed graphene as the conductive substrate to in situ grow 2D redox-active COF (TFPDQ-COF) with redox activity under solvent-free conditions to prepare TFPDQ-COF/graphene (TFPDQGO) nanohybrids and explores their application in both supercapacitor and hybrid capacitive deionization (HCDI). By optimizing the hybridization ratio, TFPDQGO exhibits a large specific capacitance of 429.0 F g-1 due to the synergistic effect of the charge transport highway provided by the graphene layers and the abundant redox-active centers contained in the COF skeleton, and the assembled TFPDQGO//activated carbon (AC) asymmetric supercapacitor possesses a high energy output of 59.4 Wh kg-1 at a power density of 950 W kg-1 and good cycling life. Furthermore, the maximum salt adsorption capacity (SAC) of 58.4 mg g-1 and stable regeneration performance is attained for TFPDQGO-based HCDI. This study highlights the new opportunities of COF-based hybrid materials acting as high-performance supercapacitor and HCDI electrode materials.

2.
Small ; 20(21): e2309353, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38098371

RESUMO

Defect engineering is recognized as an attractive method for modulating the electronic structure and physicochemical characteristics of carbon materials. Exploiting heteroatom-doped porous carbon with copious active sites has attracted great attention for capacitive deionization (CDI). However, traditional methods often rely on the utilization of additional heteroatom sources and strong corrosive activators, suffering from low doping efficiency, insufficient doping level, and potential biotoxicity. Herein, hydrogen-bonded organic frameworks (HOFs) are employed as precursors to synthesize N, O co-doped porous carbon via a simple and green reverse defect engineering strategy, achieving controllable heavy doping of heteroatoms. The N, O co-doping triggers significant pseudocapacitive contribution and the surface pore structure supports the formation of the electric double layer. Therefore, when HOF-derived N, O co-doped carbon is used as CDI electrodes, a superior salt adsorption capacity of 32.29 ± 1.42 mg g-1 and an outstanding maximum salt adsorption rate of 10.58 ± 0.46 mg g-1 min-1 at 1.6 V in 500 mg L-1 NaCl solution are achieved, which are comparable to those of state-of-the-art carbonaceous electrodes. This work exemplifies the effectiveness of the reverse nitrogen-heavy doping strategy on improving the carbon structure, shedding light on the further development of rational designed electrode materials for CDI.

3.
Small ; 20(10): e2305730, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37902412

RESUMO

One of the difficulties limiting covalent organic frameworks (COFs) from becoming excellent adsorbents is their stacking/aggregation architectures owing to poor morphology/structure control during the synthesis process. Herein, an inorganic-organic nanoarchitectonics strategy to synthesize the MXene/COF heterostructure (Ti3 C2 Tx /TAPT-TFP) is developed by the assembly of ß-ketoenamine-linked COF on the Ti3 C2 Tx MXene nanosheets. The as-prepared Ti3 C2 Tx /TAPT-TFP retains the 2D architecture and high adsorption capacity of MXenes as well as large specific surface area and hierarchical porous structure of COFs. As a proof of concept, the potential of Ti3 C2 Tx /TAPT-TFP for solid-phase microextraction (SPME) of trace organochlorine pesticides (OCPs) is investigated. The Ti3 C2 Tx /TAPT-TFP based SPME method achieves low limits of detection (0.036-0.126 ng g-1 ), wide linearity ranges (0.12-20.0 ng g-1 ), and acceptable repeatabilities for preconcentrating trace OCPs from fruit and vegetable samples. This study offers insights into the potential of constructing COF or MXene-based heterostructures for the microextraction of environmental pollutants.

4.
Small ; : e2401214, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884200

RESUMO

Nowadays, capacitive deionization (CDI) has emerged as a prominent technology in the desalination field, typically utilizing porous carbons as electrodes. However, the precise significance of electrode properties and operational conditions in shaping desalination performance remains blurry, necessitating numerous time-consuming and resource-intensive CDI experiments. Machine learning (ML) presents an emerging solution, offering the prospect of predicting CDI performance with minimal investment in electrode material synthesis and testing. Herein, four ML models are used for predicting the CDI performance of porous carbons. Among them, the gradient boosting model delivers the best performance on test set with low root mean square error values of 2.13 mg g-1 and 0.073 mg g-1 min-1 for predicting desalination capacity and rate, respectively. Furthermore, SHapley Additive exPlanations is introduced to analyze the significance of electrode properties and operational conditions. It highlights that electrolyte concentration and specific surface area exert a substantially more influential role in determining desalination performance compared to other features. Ultimately, experimental validation employing metal-organic frameworks-derived porous carbons and biomass-derived porous carbons as CDI electrodes is conducted to affirm the prediction accuracy of ML models. This study pioneers ML techniques for predicting CDI performance, offering a compelling strategy for advancing CDI technology.

5.
Small ; : e2309397, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644343

RESUMO

The utilization of solar-thermal energy and universal cold energy has led to many innovative designs that achieve effective temperature regulation in different application scenarios. Numerous studies on passive solar heating and radiation cooling often operate independently (or actively control the conversion) and lack a cohesive framework for deep connections. This work provides a concise overview of the recent breakthroughs in solar heating and radiation cooling by employing a mechanism material in the application model. Furthermore, the utilization of dynamic Janus-like behavior serves as a novel nexus to elucidate the relationship between solar heating and radiation cooling, allowing for the analysis of dynamic conversion strategies across various applications. Additionally, special discussions are provided to address specific requirements in diverse applications, such as optimizing light transmission for clothing or window glass. Finally, the challenges and opportunities associated with the development of solar heating and radiation cooling applications are underscored, which hold immense potential for substantial carbon emission reduction and environmental preservation. This work aims to ignite interest and lay a solid foundation for researchers to conduct in-depth studies on effective and self-adaptive regulation of cooling and heating.

6.
Small ; : e2309321, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528424

RESUMO

A paucity of redox centers, poor charge transport properties, and low structural stability of organic materials obstruct their use in practical applications. Herein, these issues have been addressed through the use of a redox-active salen-based framework polymer (RSFP) containing multiple redox-active centers in π-conjugated configuration for applications in lithium-ion batteries (LIBs). Based on its unique architecture, RSFP exhibits a superior reversible capacity of 671.8 mAh g-1 at 0.05 A g-1 after 168 charge-discharge cycles. Importantly, the lithiation/de-lithiation performance is enhanced during operation, leading to an unprecedented reversible capacity of 946.2 mAh g-1 after 3500 cycles at 2 A g-1. The structural evolution of RSFP is studied ex situ using X-ray photoelectron spectroscopy, revealing multiple active C═N, C─O, and C═O sites and aromatic sites such as benzene rings. Remarkably, the emergence of C═O originated from C─O is triggered by an electrochemical process, which is beneficial for improving reversible lithiation/delithiation behavior. Furthermore, the respective strong and weak binding interactions between redox centers and lithium ions, corresponding to theoretical capacities of 670.1 and 938.2 mAh g-1, have been identified by density functional theory calculations manifesting 14-electron redox reactions. This work sheds new light on routes for the development of redox-active organic materials for energy storage applications.

7.
Chem Rev ; 122(1): 1000-1051, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34730341

RESUMO

Borophene, a monolayer of boron, has risen as a new exciting two-dimensional (2D) material having extraordinary properties, including anisotropic metallic behavior and flexible (orientation-dependent) mechanical and optical properties. This review summarizes the current progress in the synthesis of borophene on various metal substrates, including Ag(110), Ag(100), Au(111), Ir(111), Al(111), and Cu(111), as well as heterostructuring of borophene. In addition, it discusses the mechanical, thermal, magnetic, electronic, optical, and superconducting properties of borophene and the effects of elemental doping, defects, and applied mechanical strains on these properties. Furthermore, the promising potential applications of borophene for gas sensing, energy storage and conversion, gas capture and storage applications, and possible tuning of the material performance in these applications through doping, formation of defects, and heterostructures are illustrated based on available theoretical studies. Finally, research and application challenges and the outlook of the whole borophene's field are given.

8.
J Am Chem Soc ; 145(16): 9242-9253, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37058355

RESUMO

The low salt adsorption capacities (SACs) of benchmark carbon materials (usually below 20 mg g-1) are one of the most challenging issues limiting further commercial development of capacitive deionization (CDI), an energetically favorable method for sustainable water desalination. Sodium superionic conductor (NASICON)-structured NaTi2(PO4)3 (NTP) materials, especially used in combination with carbon to prepare NTP/C materials, provide emerging options for higher CDI performance but face the problems of poor cycling stability and dissolution of active materials. In this study, we report the development of the yolk-shell nanoarchitecture of NASICON-structured NTP/C materials (denoted as ys-NTP@C) using a metal-organic framework@covalent organic polymer (MOF@COP) as a sacrificial template and space-confined nanoreactor. As expected, ys-NTP@C exhibits good CDI performance, including exemplary SACs with a maximum SAC of 124.72 mg g-1 at 1.8 V in the constant-voltage mode and 202.76 mg g-1 at 100 mA g-1 in the constant-current mode, and good cycling stability without obvious performance degradation or energy consumption increase over 100 cycles. Furthermore, X-ray diffraction used to study CDI cycling clearly exhibits the good structural stability of ys-NTP@C during repeated ion intercalation/deintercalation processes, and the finite element simulation shows why yolk-shell nanostructures exhibit better performance than other materials. This study provides a new synthetic paradigm for preparing yolk-shell structured materials from MOF@COP and highlights the potential use of yolk-shell nanoarchitectures for electrochemical desalination.

9.
J Am Chem Soc ; 145(50): 27262-27272, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38071659

RESUMO

Fe-Nx-C-based single-atom (SA-Fe-N-C) catalysts have shown favorable oxygen reduction reaction (ORR) activity. However, their application in proton exchange membrane fuel cells is hindered by reduced performance owing to the thick catalyst layer, restricting mass transfer and the O2 supply. Metal-organic frameworks (MOFs) are a promising class of crystal materials, but their narrow pores exacerbate the sluggish mass-transport properties within the catalyst layer. This study developed an approach for constructing an open-pore structure in MOFs via chelation-assisted selective etching, resulting in atomically dispersed Fe atoms anchored on an N, S co-doped carbon framework. The open-pore structure reduces oxygen transport resistance in the membrane electrode assembly (MEA) with unprecedented ORR activity and stability, as evidenced by finite element simulations. In an acidic electrolyte, the OP-Fe-NC catalyst shows a half-wave potential of 0.89 V vs RHE, surpassing Pt/C by 20 mV, and a current density of 29 mA cm-2 at 0.9 ViR-free in the MEA. This study provides an effective structural strategy for fabricating electrocatalysts with high mass efficiency and atomic precision for energy storage and conversion devices.

10.
J Am Chem Soc ; 144(21): 9280-9291, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35604393

RESUMO

This study demonstrates a special ultrathin N-doped graphene nanomesh (NGM) as a robust scaffold for highly exposed Fe-N4 active sites. Significantly, the pore sizes of the NGM can be elaborately regulated by adjusting the thermal exfoliation conditions to simultaneously disperse and anchor Fe-N4 moieties, ultimately leading to highly loaded Fe single-atom catalysts (SA-Fe-NGM) and a highly exposed morphology. The SA-Fe-NGM is found to deliver a superior oxygen reduction reaction (ORR) activity in acidic media (half-wave potential = 0.83 V vs RHE) and a high power density of 634 mW cm-2 in the H2/O2 fuel cell test. First-principles calculations further elucidate the possible catalytic mechanism for ORR based on the identified Fe-N4 active sites and the pore size distribution analysis. This work provides a novel strategy for constructing highly exposed transition metals and nitrogen co-doped carbon materials (M-N-C) catalysts for extended electrocatalytic and energy storage applications.

11.
Small ; 18(2): e2102477, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34585513

RESUMO

Next-generation desalination technologies are needed to meet the increasing demand for clean water. Capacitive deionization (CDI) is a thermodynamically efficient technique to treat non-potable water with relatively low salinity. The salt removal capacity and rate of CDI are highly dependent on the electrode materials, which are preferentially porous to store ions through electrosorption and/or redox reactions. Metal-organic frameworks (MOFs) with "infinite" combinations of transition metals and organic linkers simplify the production of carbonaceous materials often with redox-active components after pyrolysis. MOFs-derived materials show great tunability in both compositions and structures but require further refinement to improve CDI performance. This review article summarizes recent progress in derivatives of MOFs and MOF-like materials used as CDI electrodes, focusing on the structural and compositional material considerations as well as the processing parameters and electrode architectures of the device. Furthermore, the challenges and opportunities associated with this research area are also discussed.


Assuntos
Estruturas Metalorgânicas , Purificação da Água , Eletrodos , Íons , Salinidade , Purificação da Água/métodos
12.
Environ Res ; 210: 112909, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35157915

RESUMO

The design of high-performance electrode materials with excellent desalination ability has always been a research goal for efficient capacitive deionization (CDI). Herein, a hybrid architecture with Cu/Cu2O nanospheres anchored on porous carbon nanosheets (Cu/Cu2O/C) was first synthesized by pyrolyzing a two-dimensional (2D) Cu-based metal-organic framework and then evaluated as a cathode for hybrid CDI. The as-prepared Cu/Cu2O/C exhibits a hierarchically porous structure with a high specific surface area of 305 m2 g-1 and large pore volume of 0.55 cm3 g-1, which is favorable to accelerating ion migration and diffusion. The porous carbon nanosheet matrix with enhanced conductivity will facilitate the Faradaic reactions of Cu/Cu2O nanospheres during the desalination process. The Cu/Cu2O/C hybrid architecture displays a high specific capacitance of 142.5 F g-1 at a scan rate of 2 mV s-1 in 1 M NaCl solution. The hybrid CDI constructed using the Cu/Cu2O/C cathode and a commercial activated carbon anode exhibits a high desalination capacity of 16.4 mg g-1 at an operation voltage of 1.2 V in 500 mg L-1 NaCl solution. Additionally, the hybrid CDI exhibits a good cycling stability with 18.3% decay in the desalination capacity after 20 electrosorption-desorption cycles. Thus, the Cu/Cu2O/C composite is expected to be a promising cathode material for hybrid CDI.

13.
Environ Res ; 212(Pt C): 113331, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35472462

RESUMO

Mn-based oxides are efficient pseudocapacitive electrode materials and have been investigated for capacitive deionization (CDI). However, their poor conductivity seriously affects their desalination performance. In this work, polyaniline coated Mn2O3 nanorods (PANI/Mn2O3) are synthesized by oxidizing a Mn-based metal organic framework (MOF) and subsequent in-situ chemical polymerization. The polyaniline not only acts as a conductive network for faradaic reactions of Mn2O3, but also enhances the desalination rate. PANI/Mn2O3 has a specific capacitance of 87 F g-1 (at 1 A g-1), superior to that of Mn2O3 nanorod (52 F g-1 at 1 A g-1). The hybrid CDI cell constructed with a PANI/Mn2O3 cathode and an active carbon anode shows a high desalination capacity of 21.6 mg g-1, superior recyclability with only 11.3% desalination capacity decay after 30 desalination cycles and fast desalination rate of 2.2 mg g-1 min-1. PANI/Mn2O3 is a potential candidate for high performance CDI applications.

14.
Small ; 17(16): e2006590, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33739607

RESUMO

Electrocatalytic reduction of carbon dioxide to valuable chemicals is a sustainable technology that can achieve a carbon-neutral energy cycle in the environment. Electrochemical CO2  reduction reaction (CO2 RR) processes using metal-organic frameworks (MOFs), featuring atomically dispersed active sites, large surface area, high porosity, controllable morphology, and remarkable tunability, have attracted considerable research attention. Well-defined MOFs can be constructed to improve conductivity, introduce active centers, and form carbon-based single-atom catalysts (SACs) with enhanced active sites that are accessible for the development of CO2  conversion. In this review, the progress on pristine MOFs, MOF hybrids, and MOF-derived carbon-based SACs is summarized for the electrocatalytic reduction of CO2 . Finally, the limitations and potential improvement directions with respect to the advancement of MOF-related materials for the field of research are discussed. These summaries are expected to provide inspiration on reasonable design to develop stable and high-efficiency MOFs-based electrocatalysts for CO2 RR.

15.
Angew Chem Int Ed Engl ; 60(51): 26528-26534, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34748252

RESUMO

The application of traditional electrode materials for high-performance capacitive deionization (CDI) has been persistently limited by their low charge-storage capacities, excessive co-ion expulsion and slow salt removal rates. Here we report a bottom-up approach to the preparation of a two-dimensional (2D) Ti3 C2 Tx MXene-polydopamine heterostructure having ordered in-plane mesochannels (denoted as mPDA/MXene). Interfacial self-assembly of mesoporous polydopamine (mPDA) monolayers on MXene nanosheets leads to the mPDA/MXene heterostructure, which exhibits several unique features: (1) MXene undergoes reversible ion intercalation/deintercalation and possesses high conductivity; (2) mPDA layers establish redox capacitive characteristics and Na+ selectivity, and also help to prevent self-stacking and oxidation of MXene; (3) in-plane mesochannels enable the smooth transport of ions at the internal spaces of this stacked 2D material. When applied as an electrode material for CDI, mPDA/MXene nanosheets exhibit top-level CDI performance and cycling stability compared to those of the so far reported 2D materials. Our study opens an avenue for the rational construction of MXene-organic hybrid heterostructures, and further motivates the development of high-performance CDI electrode materials.

16.
Yao Xue Xue Bao ; 52(2): 271-8, 2017 Feb.
Artigo em Zh | MEDLINE | ID: mdl-29979515

RESUMO

The binding of rhaponticin to bovine serum albumin (BSA)-bovine lactoferrin (BLF) and the factors that affect BSA-BLF interaction have been studied by fluorescence spectroscopy and Fourier transform infrared spectroscopy. In the fluorescence experiment, RT quenched the fluorescence intensity of mixed proteome and the maximum emission wavelength of BSA, BLF and BSA-BLF proteins system. RT caused obvious red-shift fluorescence for an interaction between RT and proteome. The interaction between RT and proteome was impacted by single-component protein molecular interactions and the interaction between RT-BSA and RT-BLF, the microenvironment of solutions were the factors impacting the interactions between RT and proteome, which impacted quantitative expression of the general environment micro environmental factors. In the Fourier transform infrared spectroscopy, the secondary conformation of protein molecules of single component in the protein group were changed, and the difference of the molecules ' structure was responsible for the differences in the molecular conformation changes. The molecules ' interaction in the single-component protein affected secondary conformation of the proteins' molecule. The proteins' concentration ratio and the interaction were different in degree of molecular conformational change. These data demonstrates an example of combination of fluorescence spectrum experiment with Fourier transform infrared spectroscopy in the study of protein structura.


Assuntos
Lactoferrina/química , Soroalbumina Bovina/química , Animais , Bovinos , Simulação de Acoplamento Molecular , Estrutura Secundária de Proteína , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Mol Plant Microbe Interact ; 28(5): 558-68, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25650828

RESUMO

Rice blast caused by Magnaporthe oryzae poses a major threat to rice production worldwide. The utilization of host resistance (R) genes is considered to be the most effective and economic means to control rice blast. Here, we show that the japonica landrace Yangmaogu (YMG) displays a broader spectrum of resistance to blast isolates than other previously reported broad-spectrum resistant (BSR) cultivars. Genetic analysis suggested that YMG contains at least three major R genes. One gene, Pi64, which exhibits resistance to indica-sourced isolate CH43 and several other isolates, was mapped to a 43-kb interval on chromosome 1 of YMG. Two open reading frames (NBS-1 and NBS-2) encoding nucleotide-binding site and leucine-rich repeat proteins were short-listed as candidate genes for Pi64. Constructs containing each candidate gene were transformed into three susceptible japonica cultivars. Only transformants with NBS-2 conferred resistance to leaf and neck blast, validating the idea that NBS-2 represents the functional Pi64 gene. Pi64 is constitutively expressed at all development stages and in all tissues examined. Pi64 protein is localized in both the cytoplasm and nucleus. Furthermore, introgression of Pi64 into susceptible cultivars via gene transformation and marker-assisted selection conferred high-level and broad-spectrum leaf and neck blast resistance to indica-sourced isolates, demonstrating its potential utility in breeding BSR rice cultivars.


Assuntos
Resistência à Doença , Magnaporthe/fisiologia , Oryza/genética , Doenças das Plantas/imunologia , Proteínas/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Cruzamento , Mapeamento Cromossômico , Genes Reporter , Proteínas de Repetições Ricas em Leucina , Oryza/imunologia , Oryza/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas/metabolismo , Protoplastos , Alinhamento de Sequência , Análise de Sequência de DNA
18.
Mater Horiz ; 11(12): 2974-2985, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38592376

RESUMO

Covalent organic frameworks (COFs) with customizable geometry and redox centers are an ideal candidate for supercapacitors and hybrid capacitive deionization (HCDI). However, their poor intrinsic conductivity and micropore-dominated pore structures severely impair their electrochemical performance, and the synthesis process using organic solvents brings serious environmental and cost issues. Herein, a 2D redox-active pyrazine-based COF (BAHC-COF) was anchored on the surface of graphene in a solvent-free strategy for heterointerface regulation. The as-prepared BAHC-COF/graphene (BAHCGO) nanohybrid materials possess high-speed charge transport offered by the graphene carrier and accelerated electrolyte ion migration within the BAHC-COF, allowing ions to effectively occupy ion storage sites inside BAHC. As a result, the BAHCGO//activated carbon asymmetric supercapacitor achieves a high energy output of 61.2 W h kg-1 and a satisfactory long-term cycling life. More importantly, BAHCGO-based HCDI possesses a high salt adsorption capacity (SAC) of 67.5 mg g-1 and excellent long-term desalination/regeneration stability. This work accelerates the application of COF-based materials in the fields of energy storage and water treatment.

19.
ACS Nano ; 18(15): 10341-10373, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38572836

RESUMO

Noble-metal nanocrystals have emerged as essential electrode materials for catalytic oxidation of organic small molecule fuels in direct liquid fuel cells (DLFCs). However, for large-scale commercialization of DLFCs, adopting cost-effective techniques and optimizing their structures using advanced matrices are crucial. Notably, noble metal-decorated porous carbon nanoarchitectures exhibit exceptional electrocatalytic performances owing to their three-dimensional cross-linked porous networks, large accessible surface areas, homogeneous dispersion (of noble metals), reliable structural stability, and outstanding electrical conductivity. Consequently, they can be utilized to develop next-generation anode catalysts for DLFCs. Considering the recent expeditious advancements in this field, this comprehensive review provides an overview of the current progress in noble metal-decorated porous carbon nanoarchitectures. This paper meticulously outlines the associated synthetic strategies, precise microstructure regulation techniques, and their application in electrooxidation of small organic molecules. Furthermore, the review highlights the research challenges and future opportunities in this prospective research field, offering valuable insights for both researchers and industry experts.

20.
ACS Nano ; 18(5): 4308-4319, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38261610

RESUMO

The intrinsic roadblocks for designing promising Pt-based oxygen reduction reaction (ORR) catalysts emanate from the strong scaling relationship and activity-stability-cost trade-offs. Here, a carbon-supported Pt nanoparticle and a Mn single atom (PtNP-MnSA/C) as in situ constructed PtNP-MnSA pairs are demonstrated to be an efficient catalyst to circumvent the above seesaws with only ∼4 wt % Pt loadings. Experimental and theoretical investigations suggest that MnSA functions not only as the "assist" for Pt sites to cooperatively facilitate the dissociation of O2 due to the strong electronic polarization, affording the dissociative pathway with reduced H2O2 production, but also as an electronic structure "modulator" to downshift the d-band center of Pt sites, alleviating the overbinding of oxygen-containing intermediates. More importantly, MnSA also serves as a "stabilizer" to endow PtNP-MnSA/C with excellent structural stability and low Fenton-like reactivity, resisting the fast demetalation of metal sites. As a result, PtNPs-MnSA/C shows promising ORR performance with a half-wave potential of 0.93 V vs reversible hydrogen electrode and a high mass activity of 1.77 A/mgPt at 0.9 V in acid media, which is 19 times higher than that of commercial Pt/C and only declines by 5% after 80,000 potential cycles. Specifically, PtNPs-MnSA/C reaches a power density of 1214 mW/cm2 at 2.87 A/cm2 in an H2-O2 fuel cell.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA