Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(4): e2209528120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36649428

RESUMO

Sepsis is a lethal syndrome manifested by an unregulated, overwhelming inflammation from the host in response to infection. Here, we exploit the use of a synthetic heparan sulfate octadecasaccharide (18-mer) to protect against sepsis. The 18-mer not only inhibits the pro-inflammatory activity of extracellular histone H3 and high mobility group box 1 (HMGB1), but also elicits the anti-inflammatory effect from apolipoprotein A-I (ApoA-I). We demonstrate that the 18-mer protects against sepsis-related injury and improves survival in cecal ligation and puncture mice and reduces inflammation in an endotoxemia mouse model. The 18-mer neutralizes the cytotoxic histone-3 (H3) through direct interaction with the protein. Furthermore, the 18-mer enlists the actions of ApoA-I to dissociate the complex of HMGB1 and lipopolysaccharide, a toxic complex contributing to cell death and tissue damage in sepsis. Our study provides strong evidence that the 18-mer mitigates inflammatory damage in sepsis by targeting numerous mediators, setting it apart from other potential therapies with a single target.


Assuntos
Endotoxemia , Proteína HMGB1 , Sepse , Camundongos , Animais , Proteína HMGB1/metabolismo , Apolipoproteína A-I , Sepse/tratamento farmacológico , Sepse/metabolismo , Lipopolissacarídeos , Heparitina Sulfato , Modelos Animais de Doenças
2.
BMC Microbiol ; 24(1): 124, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622529

RESUMO

BACKGROUND: Severe burns may alter the stability of the intestinal flora and affect the patient's recovery process. Understanding the characteristics of the gut microbiota in the acute phase of burns and their association with phenotype can help to accurately assess the progression of the disease and identify potential microbiota markers. METHODS: We established mouse models of partial thickness deep III degree burns and collected faecal samples for 16 S rRNA amplification and high throughput sequencing at two time points in the acute phase for independent bioinformatic analysis. RESULTS: We analysed the sequencing results using alpha diversity, beta diversity and machine learning methods. At both time points, 4 and 6 h after burning, the Firmicutes phylum content decreased and the content of the Bacteroidetes phylum content increased, showing a significant decrease in the Firmicutes/Bacteroidetes ratio compared to the control group. Nine bacterial genera changed significantly during the acute phase and occupied the top six positions in the Random Forest significance ranking. Clustering results also clearly showed that there was a clear boundary between the communities of burned and control mice. Functional analyses showed that during the acute phase of burn, gut bacteria increased lipoic acid metabolism, seleno-compound metabolism, TCA cycling, and carbon fixation, while decreasing galactose metabolism and triglyceride metabolism. Based on the abundance characteristics of the six significantly different bacterial genera, both the XGboost and Random Forest models were able to discriminate between the burn and control groups with 100% accuracy, while both the Random Forest and Support Vector Machine models were able to classify samples from the 4-hour and 6-hour burn groups with 86.7% accuracy. CONCLUSIONS: Our study shows an increase in gut microbiota diversity in the acute phase of deep burn injury, rather than a decrease as is commonly believed. Severe burns result in a severe imbalance of the gut flora, with a decrease in probiotics and an increase in microorganisms that trigger inflammation and cognitive deficits, and multiple pathways of metabolism and substance synthesis are affected. Simple machine learning model testing suggests several bacterial genera as potential biomarkers of severe burn phenotypes.


Assuntos
Queimaduras , Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Camundongos , Bactérias/genética , Firmicutes/genética , RNA Ribossômico 16S/genética
3.
Plant Cell Rep ; 43(2): 39, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231303

RESUMO

KEY MESSAGE: Desiccation-tolerant process of xerophytic moss Pogonatum inflexum were identified through de novo transcriptome assembly , morphological structure and physiology analysis. Pogonatum inflexum (Lindb.) Lac. is a typical xerophytic moss and have been widely used in gardening and micro-landscape. However, the mechanisms underlying desiccation tolerance are still unclear. In this study, morphological,  physiological and trancriptomic analyses of P. inflexum to tolerate desiccation were carried out. Our results indicate that P. inflexum increase osmoregulation substances, shut down photosynthesis, and alter the content of membrane lipid fatty acids in response to desiccation, and the genes involved in these biological processes were changes in expression after desiccation. 12 h is the threshold for P. inflexum to tolerate desiccation and its photosynthesis has not been damaged within 12 h of desiccation and can still recover after rewater. We also proved that the gametocyte of P. inflexum has the ability to absorb and transport water, and contains lignin-synthesis genes in response to tolerant desiccation. Our findings not only explain the mechanisms of P. inflexum during desiccation, but also provide some attractive candidate genes for genetic breeding.


Assuntos
Briófitas , Dessecação , Melhoramento Vegetal , Transporte Biológico , Ácidos Graxos
4.
Angew Chem Int Ed Engl ; : e202405671, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781001

RESUMO

Proteoglycans (PGs), consisting of glycosaminoglycans (GAGs) linked with the core protein through a tetrasaccharide linkage region, play roles in many important biological events. The chemical synthesis of PG glycopeptides is extremely challenging. In this work, the enzymes required for synthesis of chondroitin sulfate (CS) PG (CSPG) have been expressed and the suitable sequence of enzymatic reactions has been established. To expedite CSPG synthesis, the peptide acceptor was immobilized on solid phase and the glycan units were directly installed enzymatically onto the peptide. Subsequent enzymatic chain elongation and sulfation led to the successful synthesis of CSPG glycopeptides. The CS dodecasaccharide glycopeptide was the longest homogeneous CS glycopeptide synthesized to date. The enzymatic synthesis was much more efficient than the chemical synthesis of the corresponding CS glycopeptides, which could reduce the total number of synthetic steps by 80%. The structures of the CS glycopeptides were confirmed by mass spectrometry analysis and NMR studies. In addition, the interactions between the CS glycopeptides and cathepsin G were studied. The sulfation of glycan chain was found to be important for binding with cathepsin G. This efficient chemoenzymatic strategy opens new avenues to investigate the structures and functions of PGs.

5.
Glycobiology ; 33(2): 104-114, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36239422

RESUMO

Heparan sulfate (HS) is a sulfated polysaccharide with a wide range of biological activities. There is an increasing interest in the development of structurally homogeneous HS oligosaccharides as therapeutics. However, the factors influencing the pharmacokinetic properties of HS-based therapeutics remain unknown. Here, we report the pharmacokinetic properties of a panel of dodecasaccharides (12-mers) with varying sulfation patterns in healthy mice and uncover the pharmacokinetic properties of an octadecasaccharide (18-mer) in acutely injured mice. In the 12-mer panel, 1 12-mer, known as dekaparin, is anticoagulant, and 3 12-mers are nonanticoagulant. The concentrations of 12-mers in plasma and urine were determined by the disaccharide analysis using liquid chromatography coupled with tandem mass spectrometry. We observed a striking difference between anticoagulant and nonanticoagulant oligosaccharides in the 12-mer panel, showing that anticoagulant dekaparin had a 4.6-fold to 8.6-fold slower clearance and 4.4-fold to 8-fold higher plasma exposure compared to nonanticoagulant 12-mers. We also observed that the clearance of HS oligosaccharides is impacted by disease. Using an antiinflammatory 18-mer, we discovered that the clearance of 18-mer is reduced 2.8-fold in a liver failure mouse model compared to healthy mice. Our results suggest that oligosaccharides are rapidly cleared renally if they have low interaction with circulating proteins. We observed that the clearance rate of oligosaccharides is inversely associated with the degree of binding to target proteins, which can vary in response to pathophysiological conditions. Our findings uncover a contributing factor for the plasma and renal clearance of oligosaccharides which will aid the development of HS-based therapeutics.


Assuntos
Anticoagulantes , Heparitina Sulfato , Animais , Camundongos , Heparitina Sulfato/química , Anticoagulantes/metabolismo , Oligossacarídeos/química , Proteínas , Cromatografia Líquida/métodos
6.
World J Surg Oncol ; 21(1): 302, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741975

RESUMO

BACKGROUND: Treatment options for advanced colon cancer are mainly combinations of chemotherapy and targeted drugs. However, poor physical health and medication intolerance limit the choice of anticancer drugs. Colon cancer with cirrhosis is a particular patient group that poses a challenge to clinical treatment. CASE PRESENTATION: This article presents a case of a patient in the decompensated stage of cirrhosis who was diagnosed with advanced colon cancer. The initial presentation was a nodule on his navel named the Sister Mary Joseph's nodule, which was later confirmed by biopsy and PET-CT as one of the metastases of colon cancer. The patient was treated with cetuximab and 5-fluorouracil at a below-guideline dose; however, portal vein thrombosis developed and led to death. This entire process, from diagnosis to death, occurred within a span of three months. CONCLUSION: Cancers with cirrhosis are a special group that deserves more attention. There is no unified treatment guideline for these patients, especially those with extrahepatic primary tumors. We should be more cautious when choosing treatment for such patients in the future. Both chemotherapy and targeted treatment may potentially induce portal vein thrombosis, which appears to have a higher incidence and worse prognosis than cancers without cirrhosis.


Assuntos
Neoplasias do Colo , Hepatopatias , Trombose , Humanos , Fluoruracila/efeitos adversos , Cetuximab/efeitos adversos , Veia Porta , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias do Colo/tratamento farmacológico , Cirrose Hepática/complicações
7.
Angew Chem Int Ed Engl ; 62(23): e202212636, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37014788

RESUMO

Apolipoprotein E (ApoE)'s ϵ4 alle is the most important genetic risk factor for late onset Alzheimer's Disease (AD). Cell-surface heparan sulfate (HS) is a cofactor for ApoE/LRP1 interaction and the prion-like spread of tau pathology between cells. 3-O-sulfo (3-O-S) modification of HS has been linked to AD through its interaction with tau, and enhanced levels of 3-O-sulfated HS and 3-O-sulfotransferases in the AD brain. In this study, we characterized ApoE/HS interactions in wildtype ApoE3, AD-linked ApoE4, and AD-protective ApoE2 and ApoE3-Christchurch. Glycan microarray and SPR assays revealed that all ApoE isoforms recognized 3-O-S. NMR titration localized ApoE/3-O-S binding to the vicinity of the canonical HS binding motif. In cells, the knockout of HS3ST1-a major 3-O sulfotransferase-reduced cell surface binding and uptake of ApoE. 3-O-S is thus recognized by both tau and ApoE, suggesting that the interplay between 3-O-sulfated HS, tau and ApoE isoforms may modulate AD risk.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Apolipoproteína E3/genética , Apolipoproteínas E/química , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Heparitina Sulfato/química , Isoformas de Proteínas/metabolismo
8.
J Biol Chem ; 296: 100312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33482195

RESUMO

Elevated plasma triglycerides are a risk factor for coronary artery disease, which is the leading cause of death worldwide. Lipoprotein lipase (LPL) reduces triglycerides in the blood by hydrolyzing them from triglyceride-rich lipoproteins to release free fatty acids. LPL activity is regulated in a nutritionally responsive manner by macromolecular inhibitors including angiopoietin-like proteins 3 and 4 (ANGPTL3 and ANGPTL4). However, the mechanism by which ANGPTL3 inhibits LPL is unclear, in part due to challenges in obtaining pure protein for study. We used a new purification protocol for the N-terminal domain of ANGPTL3, removing a DNA contaminant, and found DNA-free ANGPTL3 showed enhanced inhibition of LPL. Structural analysis showed that ANGPTL3 formed elongated, flexible trimers and hexamers that did not interconvert. ANGPTL4 formed only elongated flexible trimers. We compared the inhibition of ANGPTL3 and ANGPTL4 using human very-low-density lipoproteins as a substrate and found both were noncompetitive inhibitors. The inhibition constants for the trimeric ANGPTL3 (7.5 ± 0.7 nM) and ANGPTL4 (3.6 ± 1.0 nM) were only 2-fold different. Heparin has previously been reported to interfere with ANGPTL3 binding to LPL, so we questioned if the negatively charged heparin was acting in a similar fashion to the DNA contaminant. We found that ANGPTL3 inhibition is abolished by binding to low-molecular-weight heparin, whereas ANGPTL4 inhibition is not. Our data show new similarities and differences in how ANGPTL3 and ANGPTL4 regulate LPL and opens new avenues of investigating the effect of heparin on LPL inhibition by ANGPTL3.


Assuntos
Proteína 4 Semelhante a Angiopoietina/química , Proteínas Semelhantes a Angiopoietina/química , Doença da Artéria Coronariana/genética , Lipase Lipoproteica/química , Conformação Proteica , Proteína 3 Semelhante a Angiopoietina , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 4 Semelhante a Angiopoietina/ultraestrutura , Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/ultraestrutura , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/patologia , Heparina/farmacologia , Humanos , Lipase Lipoproteica/genética , Lipase Lipoproteica/ultraestrutura , Lipoproteínas VLDL/química , Lipoproteínas VLDL/genética , Ligação Proteica/efeitos dos fármacos , Especificidade por Substrato , Triglicerídeos/sangue
9.
Anal Chem ; 94(6): 2950-2957, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35107975

RESUMO

The 3-O-sulfated glucosamine in heparan sulfate (HS) is a low-abundance structural component, but it is a key saccharide unit for the biological activities of HS. A method to determine the level of 3-O-sulfated HS is lacking. Here, we describe a LC-MS/MS based method to analyze the structural motifs. We determined the levels of 3-O-sulfated structural motifs from pharmaceutical heparin manufactured from bovine, porcine, and ovine. We discovered that saccharide chains carrying 3-O-sulfation from enoxaparin, an FDA-approved low-molecular weight heparin, displayed a slower clearance rate than non-3-O-sulfated sugar chains in a mouse model. Lastly, we detected the 3-O-sulfated HS from human brain. Furthermore, we found that a specific 3-O-sulfated structural motif, tetra-1, is elevated in the brain HS from Alzheimer's disease patients (n = 5, p = 0.0020). Our method offers a practical solution to measure 3-O-sulfated HS from biological sources with the sensitivity and quantitative capability.


Assuntos
Sulfatos , Espectrometria de Massas em Tandem , Animais , Bovinos , Cromatografia Líquida , Heparitina Sulfato/química , Humanos , Camundongos , Oligossacarídeos/química , Ovinos , Suínos
10.
Bioorg Med Chem ; 64: 116765, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35477061

RESUMO

With the aim to discover a novel potent potassium-competitive acid blocker (P-CAB) agent, a series of 5-methyl-2,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole derivatives were synthesized, and their H+/K+-ATPase inhibitory activities and inhibitory action on histamine-stimulated gastric acid secretion in rats were evaluated. Among the compounds synthesized, compound 3'-((3-(2-fluorophenyl)-5-methyl-5,6-dihydropyrrolo[3,4-c]pyrazol-2(4H)-yl)methyl)-[1,1'-biphenyl]-3-carboxamide not only exhibited potent H+/K+-ATPase inhibitory activity but olso showed potent inhibitory action in vivo on histamine-stimulated gastric acid secretion. In addition, the lead compound displayed favourable oral pharmacokinetic properties in rats, which was worthy of further study as a novel P-CAB agent.


Assuntos
Ácido Gástrico , ATPase Trocadora de Hidrogênio-Potássio , Animais , Ácido Gástrico/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Histamina , Potássio/metabolismo , Inibidores da Bomba de Prótons/farmacologia , Pirazóis/farmacologia , Pirróis/farmacologia , Ratos
11.
Environ Res ; 203: 111879, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34390716

RESUMO

To mitigate greenhouse gas (GHG) emissions, different strategies have been proposed, including application of dolomite, crop straw and biochar, thus contributing to cope with the increasing global warming affecting the planet. In the current study, pristine wheat straw biochar (WBC) and magnesium (MgCl2.6H2O) modified wheat straw biochar (MWBC) were used. Treatments included control (CK), two WBC dosages (1% and 2.5%), and two MWBC doses (1% and 2.5%). After 90 days of incubation, WBC and MWBC improved the soil physiochemical properties, being more pronounced with increasing rates of biochar. MWBC2.5 significantly decreased microbial biomass carbon (MBC), while microbial biomass nitrogen (MBN) increased when both biochar materials (WBC1 and MWBC1) were applied at low rate. Compared to control soil, Urease and Alkaline phosphatase activities increased with the increasing rate of WBC and MWBC. The activities of dehydrogenase and ß-glucosidase decreased with the WBC and MWBC application, compared to CK. The fluxes of all the three GHGs evaluated (CO2, CH4 and N2O) decreased with time for both biochar amendments, while cumulative emission of CO2 increased by 58% and 45% for WBC, and by 54% and 41% for MWBC, as compared to CK. The N2O cumulative emissions decreased by 18 and 34% for WBC, and by 25 and 41% for MWBC, compared to CK, whereas cumulative methane emission showed non-significant differences among all treatments. These findings indicate that Mg-modified wheat straw biochar would be an appropriate management strategy aiding to reduce GHG emissions and improving the physiochemical properties of affected soils, and specifically of the red dry land soil investigated in the current work.


Assuntos
Gases de Efeito Estufa , Agricultura , Carvão Vegetal , Magnésio , Óxido Nitroso , Solo , Triticum
12.
Proc Natl Acad Sci U S A ; 116(19): 9208-9213, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31010931

RESUMO

Sepsis induces heparanase-mediated degradation of the endothelial glycocalyx, a heparan sulfate-enriched endovascular layer critical to vascular homeostasis, releasing highly sulfated domains of heparan sulfate into the circulation. These domains are oligosaccharides rich in heparin-like trisulfated disaccharide repeating units. Using a chemoenzymatic approach, an undecasaccharide containing a uniformly 13C-labeled internal 2-sulfoiduronic acid residue was synthesized on a p-nitrophenylglucuronide acceptor. Selective periodate cleavage afforded a heparin nonasaccharide having a natural structure. This 13C-labeled nonasaccharide was intravenously administered to septic (induced by cecal ligation and puncture, a model of polymicrobial peritonitis-induced sepsis) and nonseptic (sham) mice. Selected tissues and biological fluids from the mice were harvested at various time points over 4 hours, and the 13C-labeled nonasaccharide was recovered and digested with heparin lyases. The resulting 13C-labeled trisulfated disaccharide was quantified, without interference from endogenous mouse heparan sulfate/heparin, using liquid chromatography-mass spectrometry with sensitive and selective multiple reaction monitoring. The 13C-labeled heparin nonasaccharide appeared immediately in the blood and was rapidly cleared through the urine. Plasma nonasaccharide clearance was only slightly prolonged in septic mice (t1/2 ∼ 90 minutes). In septic mice, the nonasaccharide penetrated into the hippocampus but not the cortex of the brain; no hippocampal or cortical brain penetration occurred in sham mice. The results of this study suggest that circulating heparan sulfates are rapidly cleared from the plasma during sepsis and selectively penetrate the hippocampus, where they may have functional consequences.


Assuntos
Heparina/sangue , Hipocampo/fisiologia , Oligossacarídeos/sangue , Sepse/sangue , Sepse/psicologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cognição , Heparitina Sulfato/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sepse/metabolismo
13.
Glycobiology ; 31(3): 188-199, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32681173

RESUMO

Heparan sulfate (HS) is a heterogeneous, extracellular glycan that interacts with proteins and other molecules affecting many biological processes. The specific binding motifs of HS interactions are of interest, but have not been extensively characterized. Glycan microarrays are valuable tools that can be used to probe the interactions between glycans and their ligands while relying on relatively small amounts of samples. Recently, chemoenzymatic synthesis of HS has been employed to produce specific HS structures that can otherwise be difficult to produce. In this study, a microarray of diverse chemoenzymatically synthesized HS structures was developed and HS interactions were characterized. Fluorescently labeled antithrombin III (AT) and fibroblast growth factor-2 (FGF2) were screened against 95 different HS structures under three different printing concentrations to confirm the utility of this microarray. Specific sulfation patterns were found to be important for binding to these proteins and results are consistent with previous specificity studies. Furthermore, the binding affinities (KD,surf) of AT and FGF2 to multiple HS structures were determined using a microarray technique and is consistent with previous reports. Lastly, the 95-compound HS microarray was used to determine the distinct binding profiles for interleukin 12 and platelet factor 4. This technique is ideal for rapid expansion and will be pivotal to the high-throughput characterization of biologically important structure/function relationships.


Assuntos
Antitrombina III/química , Fator 2 de Crescimento de Fibroblastos/química , Heparitina Sulfato/química , Análise em Microsséries , Sítios de Ligação , Configuração de Carboidratos , Sequência de Carboidratos , Humanos
14.
Qual Life Res ; 30(7): 2045-2060, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33821418

RESUMO

PURPOSE: The purpose of this study was to compare the measurement properties of two versions of EQ-5D (i.e.EQ-5D-3L and EQ-5D-5L) in hypertensive patients in rural China. METHODS: A cross-sectional survey was carried out in hypertensive patients in rural China. We compared the ceiling effects, redistribution properties, informativity, known-groups validity, and relative efficiency of the 3L and 5L and examined their agreement. RESULTS: A total of 11,412 patients were enrolled in our study. The mean EQ-5D index score was 0.84 (SD 0.21) according to the 5L and 0.86 (SD 0.17) according to the 3L. A good agreement was observed between the 3L and 5L. The overall ceiling effect decreased from 46.4% (3L) to 29.4% (5L). The Shannon index, H' improved in all dimensions when used 5L. When used 3L, the median responses of all groups were consistent with 5L across the three dimensions of 'mobility', 'self-care', 'usual activities', while the median responses were inconsistent for the 'pain/discomfort' and 'anxiety/depression' dimensions. The 3L performed better in eight comorbidities in terms of F-statistics and six comorbidities in terms of the area under the receiver operating characteristic curves (AUROCs). The 5L performed better both in terms of the F-statistics and AUROCs in age, education level, anti-hypertensive medication use. CONCLUSION: Taking all comparisons into account, we recommend the EQ-5D-5L for use in patients with hypertension in rural China.


Assuntos
Hipertensão/epidemiologia , Psicometria/métodos , Qualidade de Vida/psicologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , China , Estudos Transversais , Feminino , Humanos , Hipertensão/patologia , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , População Rural , Inquéritos e Questionários , Adulto Jovem
15.
J Natl Compr Canc Netw ; 18(6): 718-727, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32502986

RESUMO

BACKGROUND: The role of postoperative radiotherapy (PORT) in patients with resected stage IIIA non-small cell lung cancer (NSCLC) remains controversial. The purpose of this study was to explore the effect of PORT on survival of these patients. METHODS: Patients aged ≥18 years with stage IIIA NSCLC were identified in the SEER database from 2010 through 2015. Cox regression analysis was used to identify independant prognostic factors in patients with stage IIIA NSCLC. Subgroup analysis of patients stratified by N stage was also performed. Overall survival and lung cancer-related death were compared among the different groups by using Kaplan-Meier analysis and competitive risk analysis. RESULTS: A total of 5,168 patients (1,711 of whom received PORT) were included in the study. In multivariable analysis, PORT was an independent prognostic risk factor for patients with N1 stage (hazard ratio [HR], 1.416, 95% CI, 1.144-1.753; P=.001). PORT was a favorable prognostic factor for patients with stage IIIA, N2 disease with ≥6 positive lymph nodes (HR, 0.742; 95% CI, 0.587-0.938; P=.012). Median survival time of patients with stage IIIA, N2 disease with ≥6 positive lymph nodes who received postoperative chemotherapy combined with PORT was significantly longer compared with those who received postoperative chemotherapy alone (32 vs 25 months, respectively; P=.009). The competitive risk model revealed that 3- and 5-year lung cancer-related mortality rates increased by 8.99% and 16.92%, respectively, in patients with N1 disease who were treated with PORT, whereas the 3-year mortality rate decreased by 4.67% and the 5-year mortality rate by 10.08% in patients with N2 disease and ≥6 positive lymph nodes who were treated using PORT. CONCLUSIONS: Our results revealed that PORT significantly improved overall survival and decreased lung cancer-related mortality in patients with stage IIIA, N2 disease with ≥6 positive lymph node metastases. PORT was not recommended for patients with N0 and N1 disease.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Período Pós-Operatório , Prognóstico , Programa de SEER , Adulto Jovem
16.
Org Biomol Chem ; 18(40): 8094-8102, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33026409

RESUMO

Heparan sulfate (HS) and heparin are sulfated polysaccharides exhibiting diverse physiological functions. HS 6-O-sulfotransferase (6-OST) is a HS biosynthetic enzyme that transfers a sulfo group to the 6-OH position of glucosamine to synthesize HS with desired biological activities. Chemoenzymatic synthesis is a widely adopted method to obtain HS oligosaccharides to support biological studies. However, this method is unable to synthesize all possible structures due to the specificity of natural enzymes. Here, we report the use of an engineered 6-OST to achieve fine control of the 6-O-sulfation. Unlike wild type enzyme, the engineered 6-OST only sulfates the non-reducing end glucosamine residue. Utilizing the engineered enzyme and wild type enzyme, we successfully completed the synthesis of five hexasaccharides and one octasaccharide differing in 6-O-sulfation patterns. We also identified a hexasaccharide construct as a new anticoagulant drug candidate. Our results demonstrate the feasibility of using an engineered HS biosynthetic enzyme to prepare HS-based therapeutics.


Assuntos
Sulfotransferases
17.
Pharm Biol ; 58(1): 695-700, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32673137

RESUMO

CONTEXT: Lysionotin, a major extraction of Lysionotus pauciflorus Maxim (Gesneriaceae), has a variety of pharmacological properties commonly used in the treatment of lung disease. A study of lysionotin on the activity of human liver cytochrome P450 (CYP) enzymes can provide guidance on the clinical application of lysionotin. OBJECTIVE: This study investigated the interaction between lysionotin and CYPs. MATERIAL AND METHOD: The effects of 100 µM lysionotin on eight human liver CYP isoforms (i.e., 1A2, 3A4, 2A6, 2E1, 2D6, 2C9, 2C19 and 2C8) were investigated in vitro using human liver microsomes (HLMs) with specific inhibitor as positive control and untreated HLMs as control. Meanwhile, the enzyme kinetic parameters were calculated. A time-dependent study was performed with a time interval of 5 min in 30 min. RESULTS: Lysionotin was found to inhibit the activity of CYP3A4, 2C19, and 2C8, with IC50 values of 13.85, 24.95, and 30.05 µM, respectively. The inhibition of CYP3A4 was performed in a non-competitive manner with the Ki value of 6.83 µM, while the inhibition of CYP2C19 and 2C8 was performed in a competitive manner with Ki values of 12.41 and 14.51 µM. Moreover, it was found that the inhibition of CYP3A4 was time-dependent with K I/K inact value of 6.618/0.048 min/µM. Discussion and conclusions: The in vitro inhibitory effect of lysionotin on the activity of CYP3A4, 2C19, and 2C8 indicated potential drug interactions between lysionotin and drugs metabolised by CYP3A4, 2C19, and 2C8. Further in vivo experiments are needed to assess the potential interactions.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Flavonas/farmacologia , Flavonoides/farmacologia , Microssomos Hepáticos/efeitos dos fármacos , Inibidores das Enzimas do Citocromo P-450/administração & dosagem , Inibidores das Enzimas do Citocromo P-450/isolamento & purificação , Sistema Enzimático do Citocromo P-450/metabolismo , Flavonas/administração & dosagem , Flavonas/isolamento & purificação , Flavonoides/administração & dosagem , Flavonoides/isolamento & purificação , Humanos , Concentração Inibidora 50 , Magnoliopsida/química , Microssomos Hepáticos/enzimologia , Fatores de Tempo
18.
Angew Chem Int Ed Engl ; 59(5): 1818-1827, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31692167

RESUMO

Prion-like transcellular spreading of tau in Alzheimer's Disease (AD) is mediated by tau binding to cell surface heparan sulfate (HS). However, the structural determinants for tau-HS interaction are not well understood. Microarray and SPR assays of structurally defined HS oligosaccharides show that a rare 3-O-sulfation (3-O-S) of HS significantly enhances tau binding. In Hs3st1-/- (HS 3-O-sulfotransferase-1 knockout) cells, reduced 3-O-S levels of HS diminished both cell surface binding and internalization of tau. In a cell culture, the addition of a 3-O-S HS 12-mer reduced both tau cell surface binding and cellular uptake. NMR titrations mapped 3-O-S binding sites to the microtubule binding repeat 2 (R2) and proline-rich region 2 (PRR2) of tau. Tau is only the seventh protein currently known to recognize HS 3-O-sulfation. Our work demonstrates that this rare 3-O-sulfation enhances tau-HS binding and likely the transcellular spread of tau, providing a novel target for disease-modifying treatment of AD and other tauopathies.


Assuntos
Doença de Alzheimer/genética , Membrana Celular/metabolismo , Heparitina Sulfato/química , Proteínas tau/metabolismo , Células Cultivadas , Humanos
19.
J Biol Chem ; 293(48): 18559-18573, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30301767

RESUMO

The glycoside hydrolases encoded by the human gut microbiome play an integral role in processing a variety of exogenous and endogenous glycoconjugates. Here we present three structurally and functionally distinct ß-glucuronidase (GUS) glycoside hydrolases from a single human gut commensal microbe, Bacteroides uniformis We show using nine crystal structures, biochemical, and biophysical data that whereas these three proteins share similar overall folds, they exhibit different structural features that create three structurally and functionally unique enzyme active sites. Notably, quaternary structure plays an important role in creating distinct active site features that are hard to predict via structural modeling methods. The enzymes display differential processing capabilities toward glucuronic acid-containing polysaccharides and SN-38-glucuronide, a metabolite of the cancer drug irinotecan. We also demonstrate that GUS-specific and nonselective inhibitors exhibit varying potencies toward each enzyme. Together, these data highlight the diversity of GUS enzymes within a single Bacteroides gut commensal and advance our understanding of how structural details impact the specific roles microbial enzymes play in processing drug-glucuronide and glycan substrates.


Assuntos
Bacteroides/enzimologia , Microbioma Gastrointestinal , Glucuronidase/química , Glucuronidase/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Inibidores Enzimáticos/farmacologia , Ácido Glucárico/análogos & derivados , Glucuronidase/antagonistas & inibidores , Humanos , Conformação Proteica
20.
Glycobiology ; 29(8): 572-581, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31143933

RESUMO

The specificity and action pattern of a ß-glucuronidase derived from the pathogenic bacteria Burkholderia pseudomallei and expressed in Escherichia coli as a recombinant protein has been evaluated. While this enzyme shows activity on a number of glycosaminoglycans, our study has focused on its action on heparin, heparan sulfate and their biosynthetic intermediates as well as chemoenzymatically synthesized, structurally defined heparan sulfate oligosaccharides. These heparin/heparan sulfate (HP/HS) substrates examined varied in size and structure, but all contained an uronic acid (UA) residue ß-(1→4) linked to a glucosamine residue. On the substrates tested, this enzyme (heparanase Bp) acted only on a glucuronic acid residue ß-(1→4) linked to an N-acetylglucosamine, N-sulfoglucosamine or N-acetyl-6-O-sulfoglucosamine residue. A substrate was required to have a length of pentasaccharide or longer and heparanase Bp acted with a random endolytic action pattern on HP/HS. The specificity and glycohydrolase mechanism of action of heparanase Bp resembles mammalian heparanase and is complementary to the bacterial heparin lyases, which act through an eliminase mechanism on a glucosamine residue (1→4) linked to a UA residue, suggesting its utility as a tool for the structural determination of HP/HS as well as representing a possible model for the medically relevant mammalian heparanase. The utility heparanase Bp was demonstrated by the oligosaccharide mapping of heparin, which afforded resistant intact highly sulfated domains ranging from tetrasaccharide to >28-mer with a molecular weight >9000.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/enzimologia , Glucuronidase/metabolismo , Heparina/análogos & derivados , Heparina/metabolismo , Heparitina Sulfato/análogos & derivados , Heparitina Sulfato/química , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA