Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Opt Express ; 32(3): 2959-2971, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297531

RESUMO

The diffuse attenuation coefficient (Kd) is known to be closely related to the light transmittance of sea ice, which plays a critical role in the energy balance and biological processes of the upper ocean. However, the commercial instruments cannot easily measure Kd in sea ice because sea ice is a solid. The authors of this study are developing an instrument with a high spectral solution to measure the irradiance profile of sea ice and the irradiance in the atmosphere. Three Kd experiments were carried out, including two in-situ experiments in the Liaodong Bay and one in the laboratory. The results showed that the Kd of the sea ice varied with depth, and the values in adjacent sea ice layers differed by up to 2 times. In addition, due to changes in the climate environment, the Kd of sea ice showed temporal variations. For example, there was a 1.38-fold difference in the Kd values of the surface layer of sea ice at different times in 2022. The values in different sea ice layers also showed different trends over time, and the coefficient of determination (R2) of Kd between adjacent layers over time was as low as 0.008. To explain the driving mechanism of spatio-temporal variability of Kd, an additional experiment focusing on the physical microstructure of sea ice was conducted in Liaodong Bay in 2022. The result shows that the change in air bubbles in the sea ice may be the main the reason for the change in Kd. For example, when the sea ice was exchanging brine and bubbles with the atmosphere above and the seawater below, the highly absorbent particles in it tend to remain in their original position. Considering that the total absorption coefficient changed slightly, the bubbles with the characteristic of intense scattering were found to be the main factor influencing the Kd changes. This conclusion is supported by the fact that the value of R2 between the bubbles and Kd was 0.52. If climatic changes have led to an increase in the volume of bubbles, the more bubbles will increase the scattering properties of sea ice and lead to an increase in Kd. Conversely, the reduced bubble volume would reduce the scattering properties of sea ice, which in turn would reduce Kd.

2.
Appl Microbiol Biotechnol ; 108(1): 388, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900314

RESUMO

Despite increased attention to the aquaculture environment, there is still a lack of understanding regarding the significance of water quality. To address this knowledge gap, this study utilized high-throughput sequencing of 16S rRNA and 18S rRNA to examine microbial communities (bacteria and eukaryotes) in coastal water over different months through long-term observations. The goal was to explore interaction patterns in the microbial community and identify potential pathogenic bacteria and red tide organisms. The results revealed significant differences in composition, diversity, and richness of bacterial and eukaryotic operational taxonomic units (OTUs) across various months. Principal coordinate analysis (PCoA) demonstrated distinct temporal variations in bacterial and eukaryotic communities, with significant differences (P = 0.001) among four groups: F (January-April), M (May), S (June-September), and T (October-December). Moreover, a strong association was observed between microbial communities and months, with most OTUs showing a distinct temporal preference. The Kruskal-Wallis test (P < 0.05) indicated significant differences in dominant bacterial and eukaryotic taxa among months, with each group exhibiting unique dominant taxa, including potential pathogenic bacteria and red tide organisms. These findings emphasize the importance of monitoring changes in potentially harmful microorganisms in aquaculture. Network analysis highlighted positive correlations between bacteria and eukaryotes, with bacteria playing a key role in network interactions. The key bacterial genera associated with other microorganisms varied significantly (P < 0.05) across different groups. In summary, this study deepens the understanding of aquaculture water quality and offers valuable insights for maintaining healthy aquaculture practices. KEY POINTS: • Bacterial and eukaryotic communities displayed distinct temporal variations. • Different months exhibited unique potential pathogenic bacteria and red tide organisms. • Bacteria are key taxonomic taxa involved in microbial network interactions.


Assuntos
Aquicultura , Bactérias , Eucariotos , RNA Ribossômico 16S , RNA Ribossômico 18S , Água do Mar , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Eucariotos/classificação , Eucariotos/genética , Eucariotos/isolamento & purificação , Água do Mar/microbiologia , RNA Ribossômico 18S/genética , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota , Estações do Ano , Biodiversidade , Filogenia
3.
Opt Express ; 31(17): 28185-28199, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710879

RESUMO

The particulate backscattering coefficient (bbp) plays an important role in the growth of coral reefs by influencing the light field conditions. Small-scale optically shallow waters are commonly found in coastal fringing reefs, making it challenging to monitor the spatial and temporal patterns accurately using Aqua satellites with a low spatial resolution. In this study, six existing optimization-based algorithms for deriving bbp at 400 nm (bbp(400)) were evaluated with three simulated Landsat-8 (spatial resolution = 30 m) data sets and in situ data from the Luhuitou Peninsula, Sanya. The comparison results indicated that the HOPE (hyperspectral optimization process exemplar) (Fix-H-error or Fix-H-error-free) algorithm which sets an input value of the water depth alone outperformed other algorithms. However, the estimated bbp(400) from all the algorithms tended to be either overestimated and underestimated due to the improper the spectral shape value of the backscattering coefficient. The HOPE (Fix-H-error) algorithm estimated-bbp(400) from in situ reflectance also had a good correlation with the in situ total suspended particle concentrations data derived-bbp(400), with a correlation coefficient of 0.83. Therefore, the HOPE (Fix-H-error) algorithm was selected to estimate the bbp(400) from satellite-based Landsat-8 data of the Luhuitou Peninsula, Sanya. Time-series (2014-2021) results from these Landsat-8 images reveal the seasonal variation of bbp(400). The bbp(400) was low from May to September every year. From October to December or January, bbp(400) had an increasing trend, and then it decreased until May. Spatial analysis indicated that bbp(400) decreased with increasing water depth. The spatial and temporal patterns of bbp(400) were consistent with in situ observations reported in the literature. This study preliminarily showed the efficiency of an optimization-based algorithm in deriving bbp(400) in small-scale optically shallow water region using Landsat-8 data.

4.
Opt Express ; 31(26): 43771-43789, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38178466

RESUMO

The vertical distribution of the diffuse attenuation coefficient K(z, λ) is critical for studies in bio-optics, ocean color remote sensing, underwater photovoltaic power, etc. It is a key apparent optical property (AOP) and is sensitive to the volume scattering function ß(ψ, z, λ). Here, using three machine learning algorithms (MLAs) (categorical boosting (CatBoost), light gradient boosting machine (LightGBM), and random forest (RF)), we developed a new approach for estimating the vertical distribution of Kd(z, 650), KLu(z, 650), and Ku(z, 650) and applied it to the South China Sea (SCS). In this approach, based on in situ ß(ψ, z, 650), the absorption coefficient a(z, 650), the profile depths z, and Kd(z, 650), KLu(z, 650), and Ku(z, 650) calculated by Hydrolight 6.0 (HL6.0), three machine learning models (MLMs) without or with boundary conditions for estimating Kd(z, 650), KLu(z, 650), and Ku(z, 650) were established, evaluated, compared, and applied. It was found that (1) CatBoost models have superior performance with R2 ≥ 0.92, RMSE≤ 0.021 m-1, and MAPE≤ 4.3% and most significantly agree with HL6.0 simulations; (2) there is a more satisfactory consistency between HL6.0 simulations and MLMs estimations while incorporating the boundary conditions; (3) the estimations of Kd(z, 650), KLu(z, 650), and Ku(z, 650) derived from CatBoost models with and without boundary conditions have a good agreement with R2 ≥0.992, RMSE ≤0.007 m-1, and MAPE≤0.8%, respectively; (4) there is an overall decreasing trend with increasing depth and increasing offshore distance of Kd(z, 650), KLu(z, 650), and Ku(z, 650) in the SCS. The MLMs for estimating K(z, λ) could provide more accurate information for the study of underwater light field distribution, water quality assessment and the validation of remote sensing data products.

5.
J Environ Manage ; 300: 113754, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34543965

RESUMO

With the recent growing interest of antibiotic resistance genes (ARGs) and their co-selection with heavy metal resistance genes (HMRGs), their relationship to heavy metals needs further analysis. This study examined the response of heavy metal resistant microorganisms (HMRMs) and antibiotic resistant microorganisms (ARMs) and their resistance genes (HMRGs and ARGs) to Cu and Cr stresses using metagenome. Results showed that Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, and Nitrospirae are the dominant HMRMs and ARMs, with majority of HMRMs taxa presenting changes similar to ARMs under heavy metal stresses. Types of HMRGs and ARGs changed (increased or decreased) under Cu and Cr stresses, and a significant relationship was noted between HMRGs and ARGs and their related microbe (p < 0.05). Network analysis revealed synergistic relationships between majority of HMRGs and ARGs; however, negative correlations were also noted between them. Co-occurrence of HMRGs and ARGs was mainly observed in chromosomes, and plasmids were found to provide limited opportunities for heavy metals to promote antibiotic resistance through co-selection. These findings imply that the response of HMRMs and ARMs is induced by heavy metals, and that the changes in these microbial communities are the main factor driving the diversity and abundance of HMRGs and ARGs.


Assuntos
Metais Pesados , Esgotos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Metais Pesados/toxicidade
6.
Opt Express ; 28(9): 13155-13176, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32403796

RESUMO

Using large amounts of bio-optical data collected in the South China Sea (SCS) from 2003 to 2016, this study checks the consistency between well-known semi-analytical algorithms (SAAs)-the quasi-analytical algorithm (QAA) and the default generalized inherent optical property (GIOP-DC)-in retrieving the non-water absorption coefficient (anw(λ)), phytoplankton absorption coefficient (aph(λ)) and particulate backscattering coefficient (bbp(λ)) from remote-sensing reflectance (Rrs(λ)) data at 412, 443, 490, 531, and 555 nm. The samples from the SCS are further separated into oligotrophic and mesotrophic water types for the comparison of the SAAs. Several findings are made: First, the values of anw(λ) derived from the two SAAs deliver similar performance, with R2 values ranging from 0.74 to 0.85 and 0.74 to 0.87, implying absolute percent error differences (APDs) from 37.93% to 74.88% and from 32.32% to 71.75% for the QAA and GIOP-DC, respectively. The QAA shows a value of R2 between 0.64 and 0.91 and APDs between 43.57% to 83.53%, while the GIOP-DC yields R2 between 0.76 to 0.89 and APDs between 44.65% to 79.46% when estimating aph(λ). The values of bbp(λ) derived from the QAA are closer to the in-situ bbp(λ) values, as indicated by the low values of the normalized centered root-mean-square deviation and normalized standard deviation, which are close to one. Second, a regionally tuned estimation of aph(λ) is proposed and recommended for the SCS. This consistency check of inherent optical properties products from SAAs can serve as reference for algorithm selection for further applications, including primary production, carbon, and biogeochemical models of the SCS, and can provide guidance for improving aph(λ) estimation.

7.
Opt Express ; 26(8): 10476-10493, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29715984

RESUMO

An empirical algorithm is proposed to estimate suspended particulate matter (SPM) ranging from 0.675 to 25.7 mg L-1 in the turbid Pearl River estuary (PRE). Comparisons between model predicted and in situ measured SPM resulted in R2s of 0.97 and 0.88 and mean absolute percentage errors (MAPEs) of 23.96% and 29.69% by using the calibration and validation data sets, respectively. The developed algorithm demonstrated the highest accuracy when compared with existing ones for turbid coastal waters. The diurnal dynamics of SPM was revealed by applying the proposed algorithm to reflectance data collected by a moored buoy in the PRE. The established algorithm was implemented to Hyperspectral Imager for the Coastal Ocean (HICO) data and the distribution pattern of SPM in the PRE was elucidated. Validation of HICO-derived reflectance data by using concurrent MODIS/Aqua data as a benchmark indicated their reliability. Factors influencing variability of SPM in the PRE were analyzed, which implicated the combined effects of wind, tide, rainfall, and circulation as the cause.

8.
Appl Opt ; 56(30): 8362-8371, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29091614

RESUMO

Phytoplankton cell size is an important property that affects diverse ecological and biogeochemical processes, and analysis of the absorption and scattering spectra of phytoplankton can provide important information about phytoplankton size. In this study, an inversion method for extracting quantitative phytoplankton cell size data from these spectra was developed. This inversion method requires two inputs: chlorophyll a specific absorption and scattering spectra of phytoplankton. The average equivalent-volume spherical diameter (ESDv) was calculated as the single size approximation for the log-normal particle size distribution (PSD) of the algal suspension. The performance of this method for retrieving cell size was assessed using the datasets from cultures of 12 phytoplankton species. The estimations of a(λ) and b(λ) for the phytoplankton population using ESDv had mean error values of 5.8%-6.9% and 7.0%-10.6%, respectively, compared to the a(λ) and b(λ) for the phytoplankton populations using the log-normal PSD. The estimated values of CiESDv were in good agreement with the measurements, with r2=0.88 and relative root mean square error (NRMSE)=25.3%, and relatively good performances were also found for the retrieval of ESDv with r2=0.78 and NRMSE=23.9%.


Assuntos
Tamanho Celular , Clorofila/análise , Fitoplâncton/citologia , Contagem de Células , Clorofila A , Cromatografia Líquida de Alta Pressão , Conjuntos de Dados como Assunto , Densitometria/métodos , Fitoplâncton/química , Tecnologia de Sensoriamento Remoto , Especificidade da Espécie
9.
Opt Express ; 22(9): 10467-76, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24921748

RESUMO

Phytoplankton size is important for the pelagic food web and oceanic ecosystems. However, the size of phytoplankton is difficult to quantify because of methodological constraints. To address this limitation, we have exploited the phytoplankton package effect to develop a new method for estimating the mean cell size of individual phytoplankton populations. This method was validated using a data set that contained simultaneous measurements of phytoplankton absorption and cell size distributions from 13 phytoplankton species. Comparing with existing methods, our method is more efficient with good accuracy, and it could potentially be applied in current in situ optical instruments.


Assuntos
Óptica e Fotônica/métodos , Fitoplâncton/química , Tamanho Celular , Ecossistema , Oceanos e Mares
10.
Mar Pollut Bull ; 202: 116377, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669852

RESUMO

Red Noctiluca scintillans (RNS), a prominent species of dinoflagellate known for its conspicuous size and ability to form blooms, exhibits heterotrophic behavior and functions as a microzooplankton grazer within the marine food web. In this study, a straightforward technique referred to as the blue-green index (BGI) has been introduced for the purpose of distinguishing and discerning RNS from neighboring waters, owing to its pronounced absorption in the blue-green spectral range. This method has been applied across a range of satellite imagery, encompassing both multi-spectral and hyperspectral sensors. The study delved into three instances of bloom occurrences caused by RNS: firstly, in November 2014 and April 2022 off the western coast of Guangdong, and secondly, in February 2021 within the Beibu Gulf. The notable bloom event in the Beibu Gulf during February 2021 extended across an expansive area totaling 6933.5 km2. The motion speed and direction of the RNS bloom patches were also derived from successive satellite images. The recently introduced BGI method demonstrates insensitivity to suspended sediment, though its successful application necessitates accurate atmospheric correction. Subsequent efforts will involve the quantification of RNS blooms in a more precise manner, utilizing hyperspectral satellite data grounded in optimized band configurations.


Assuntos
Dinoflagellida , Monitoramento Ambiental , Eutrofização , Imagens de Satélites , Monitoramento Ambiental/métodos
11.
Sci Rep ; 14(1): 25516, 2024 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-39462029

RESUMO

Chlorophyll a (Chl-a) is a key indicator of marine ecosystems, and certain hydro-meteorological parameters (HMPs) are highly correlated with its fluctuations. Here, relevant and accessible HMPs were used as inputs, combined with machine learning (ML) algorithms for estimating 3D Chl-a in the South China Sea (SCS). With the inputs of temperature, salinity, depth, wind speed, wind direction, sea surface pressure, and relative humidity, the LightGBM-based model performed well, achieving high R2 values of 0.985 and 0.789 in validation and testing sets, respectively. Based on a large number of in situ measurements, this model enables the estimation of the 3D distribution of summer Chl-a in the SCS over the past fifteen years using a 3D hydrographic dataset combined with surface meteorological parameters. The results show that the 3D distribution of the model estimated Chl-a is characterized similarly to the previous studies and can capture the effect of hydro-meteorological conditions on Chl-a distribution. The environmental variables affecting Chl-a were considered more comprehensively in this study, and the methodological framework has the potential to be applied to the low-cost monitoring of the remaining water quality parameters.

12.
Lab Chip ; 24(14): 3528-3535, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38940766

RESUMO

Optical detection is an indispensable part of microfluidic systems for nutrient determination in seawater. Coupling total internal reflection capillaries with microfluidic chips is a practical alternative to increase the optical path length for high-sensitivity and a low detection limit in colorimetric assays, which has not been applied in microfluidic devices for seawater nutrients. Here, we present an online microfluidic system which integrated a total internal reflection capillary made of Teflon AF 2400 for the high-sensitivity detection of nitrite and nitrate in seawater. The off-chip capillary lengthens the optical path without changing the internal flow path of the microfluidic chip, enhancing the sensitivity, reducing the detection limit and widening the dynamic range of the system, which significantly improves the performance of the microfluidic system based on wet-chemistry. The detection limit for nitrite is 0.0150 µM using an external 20 cm capillary and 0.0936 µM using an internal 5 cm absorption cell, providing an over 6-fold improvement. Laboratory analysis of surface seawater samples collected from the South China Sea with this system and a one-month online deployment of an autonomous analyzer developed based on this system at a station revealed correlations between the nitrite and nitrate with tide, salinity and chlorophyll over slight variations and narrow ranges, demonstrating the high-sensitivity of this method.

13.
Anal Chim Acta ; 1329: 343155, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39396271

RESUMO

BACKGROUND: Optical detection is frequently performed on microfluidic chips for colorimetric analysis. Integrating liquid waveguide capillaries with total internal reflection with the microfluidic chip requires less procedures, which is suitable in the optical detection of microfluidic systems and is a practical alternative to increase the optical path length in the colorimetric assay of microfluidic devices for higher sensitivities and lower detection limit. However, this alternative has not been applied to the connection of PMMA chips or the microfluidic devices for the detection of phosphate in seawater. RESLUTS: Here, a lab-on-a-chip system integrating a microfluidic chip and an external liquid waveguide capillary cell was presented to detect the phosphate in seawater. The detachable total internal reflection capillary made of Teflon AF 2400 connected to the chip transports sample and transmits light, greatly reducing detection limit, eliminating the interference from stray light and widening the dynamic range of the system without specific surface treatment of the microchannel. By utilizing an internal 5-cm absorption cell and an external 20-cm liquid waveguide capillary cell, the system reaches detection limits of 59 nM and 8 nM, respectively, and can detect phosphate concentration from 0 to 23 µM. An online analyzer was developed based on the high-sensitivity system and was applied to shipboard underway analysis for two scientific cruises and to laboratory measurements for seawater samples from Xisha sea area. SIGNIFICANCE: Correlation analyses between the shipboard and laboratory phosphate measurements and other physical and biochemical elements revealed the marine ecological characteristics of the corresponding areas, demonstrating the high-sensitivity of this method over slight variations and narrow ranges of phosphate and the ability to provide microfluidic systems for high spatiotemporal resolution phosphate determination a practical and cost-effective alternative.

14.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(4): 1141-5, 2013 Apr.
Artigo em Zh | MEDLINE | ID: mdl-23841445

RESUMO

Colored dissolved organic matter (CDOM) plays an important role in marine ecosystems. In order to solve the current problems in measurement of CDOM absorption, an automated onboard analyzer based on liquid core waveguides (Teflon AF LWCC/LCW) was constructed. This analyzer has remarkable characteristics including adjusted optical pathlength, wide measurement range, and high sensitivity. The model of filtration and injection can implement the function of automated filtration, sample injection, and LWCC cleaning. The LabVIEW software platform can efficiently control the running state of the analyzer and acquire real time data including light absorption spectra, GPS data, and CTW data. By the comparison experiments and shipboard measurements, it was proved that the analyzer was reliable and robust.

15.
Opt Express ; 20(10): 11189-206, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22565742

RESUMO

The scattering and backscattering coefficients of 15 phytoplankton species were determined in the laboratory using the acs and BB9 instruments. The spectral variability of scattering properties was investigated and the homogenous sphere model based on Mie theory was also evaluated. The scattering efficiencies at 510 nm varied from 1.42 to 2.26, and the backscattering efficiencies varied from 0.003 to 0.020. The backscattering ratios at 510 nm varied from 0.17% to 0.97%, with a mean value of 0.58%. The scattering properties were influenced by algal cell size and cellular particulate organic carbon content rather than the chlorophyll a concentration. Comparison of the measured results to the values estimated using the homogenous sphere model showed that: (1) The model could well reproduce the spectral scattering coefficient with relative deviations of 5-39%, which indicates that cell shape and internal structure have no significant effects on predicting the scattering spectra; (2) Although the homogenous sphere model generally reflected the spectral trend of backscattering spectra for most species, it severely underestimated the backscattering coefficients by 1.4-48.6 folds at 510 nm. The deviations for Chaetoceros sp. and Microcystis aeruginosa were large and might be due to algal cell chain links and intracellular gas vacuoles, respectively.


Assuntos
Monitoramento Ambiental/métodos , Água Doce/química , Fitoplâncton/química , Fitoplâncton/metabolismo , Espalhamento de Radiação , Algoritmos , China , Clorofila , Clorofila A , Luz , Modelos Teóricos , Oceanografia/métodos , Óptica e Fotônica , Tamanho da Partícula , Material Particulado , Reprodutibilidade dos Testes , Poluentes Químicos da Água
16.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(11): 2881-5, 2011 Nov.
Artigo em Zh | MEDLINE | ID: mdl-22242477

RESUMO

Teflon AF is chemically very inert, quite physically and optically stable, a highly vapor-permeable polymer with optical transparency through much of the UV-Vis region and with an RI lower than that of water, so Teflon AF LWCC/LCW (Long path-length liquid waveguide capillary cell/liquid core waveguides) has been used with a range of different detection techniques, including absorbance spectroscopy, fluorescence spectroscopy, Raman spectroscopy, and gas sensor. The present article describes the properties and the aspects of Teflon AF LWCC/LCW instrumentation and applications. And finally,the future prospect and outlook of Teflon AF LWCC/LCW is also discussed.

17.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(7): 1902-7, 2010 Jul.
Artigo em Zh | MEDLINE | ID: mdl-20827996

RESUMO

In the present study, the relationships between sea ice albedo and the bidirectional reflectance distribution in Liaodong Bay were investigated. The results indicate that: (1) sea ice albedo alpha(lambda) is closely related to the components of sea ice, the higher the particulate concentration in sea ice surface is, the lower the sea ice albedo alpha(lambda) is. On the contrary, the higher the bubble concentration in sea ice is, the higher sea ice albedo alpha(lambda) is. (2) Sea ice albedo alpha(lambda) is similar to the bidirectional reflectance factor R(f) when the probe locates at nadir. The R(f) would increase with the increase in detector zenith theta, and the correlation between R(f) and the detector azimuth would gradually increase. When the theta is located at solar zenith 63 degrees, the R(f) would reach the maximum, and the strongest correlation is also shown between the R(f) and the detector azimuth. (3) Different types of sea ice would have the different anisotropic reflectance factors.

18.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(6): 1610-3, 2010 Jun.
Artigo em Zh | MEDLINE | ID: mdl-20707160

RESUMO

Sea ice plays an important role in the global climate systems. In the present article, a hyperspectral radiation system for the observation of optical properties of sea ice was designed. The system consists of three optical channels, which can operate simultaneously. Two kinds of optical detectors were designed, and the problem relevant to the water-tightness was resolved. The system can be used to measure the solar radiation beneath the sea ice by an "L" bracket. Another bracket for detecting bidirectional reflectance was designed, which can fix the optical detector at any angle ranging over 0-180 measured with an angle detector. In order to make a most suitable and automatic integrated time, the system can adjust the integrated time intelligently by itself. The system can work stably under extremely low temperature. Furthermore, the system was equipped with four thermistors and one GPS. The system was validated showing a good stability and veracity in situ in the Liaodong Bay.

19.
Mar Pollut Bull ; 151: 110629, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31753562

RESUMO

Accidental release of petroleum in the Arctic is of growing concern owing to increases in ship traffic and possible future oil exploration. A crude oil-in-sea ice mesocosm experiment was conducted to identify oil-partitioning trends in sea ice and determine the effect of weathering on crude oil permittivity. The dissolution of the lighter fractions increased with decreasing bulk oil-concentration because of greater oil-brine interface area. Movement of the oil towards the ice surface predominated over dissolution process when oil concentrations exceeded 1 mg/mL. Evaporation decreased oil permittivity due to losses of low molecular weight alkanes and increased asphaltene-resin interactions. Photooxidation increased the permittivity of the crude oil due to the transformation of branched aromatics to esters and ketones. Overall, the weathering processes influenced crude oil permittivity by up to 15%, which may produce sufficient quantifiable differences in the measured normalized radar cross-section of the ice.


Assuntos
Monitoramento Ambiental/métodos , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Regiões Árticas , Radar , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA