Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33563763

RESUMO

Sociability is fundamental for our daily life and is compromised in major neuropsychiatric disorders. However, the neuronal circuit mechanisms underlying prosocial behavior are still elusive. Here we identify a causal role of the basal forebrain (BF) in the control of prosocial behavior via inhibitory projections that disinhibit the midbrain ventral tegmental area (VTA) dopamine (DA) neurons. Specifically, BF somatostatin-positive (SST) inhibitory neurons were robustly activated during social interaction. Optogenetic inhibition of these neurons in BF or their axon terminals in the VTA largely abolished social preference. Electrophysiological examinations further revealed that SST neurons predominantly targeted VTA GABA neurons rather than DA neurons. Consistently, optical inhibition of SST neuron axon terminals in the VTA decreased DA release in the nucleus accumbens during social interaction, confirming a disinhibitory action. These data reveal a previously unappreciated function of the BF in prosocial behavior through a disinhibitory circuitry connected to the brain's reward system.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Prosencéfalo/fisiologia , Comportamento Social , Área Tegmentar Ventral/fisiologia , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Masculino , Camundongos , Inibição Neural , Prosencéfalo/citologia , Recompensa , Somatostatina/genética , Somatostatina/metabolismo , Área Tegmentar Ventral/citologia
2.
Brain ; 144(11): 3405-3420, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34244727

RESUMO

Neuropathic pain is a major health problem that affects up to 7-10% of the population worldwide. Currently, neuropathic pain is difficult to treat because of its elusive mechanisms. Here we report that orphan G protein-coupled receptor 151 (GPR151) in nociceptive sensory neurons controls neuropathic pain induced by nerve injury. GPR151 was mainly expressed in non-peptidergic C-fibre dorsal root ganglion neurons and highly upregulated after nerve injury. Importantly, conditional knockout of Gpr151 in adult nociceptive sensory neurons significantly alleviated chronic constriction injury-induced neuropathic pain-like behaviour but did not affect basal nociception. Moreover, GPR151 in DRG neurons was required for chronic constriction injury-induced neuronal hyperexcitability and upregulation of colony-stimulating factor 1 (CSF1), which is necessary for microglial activation in the spinal cord after nerve injury. Mechanistically, GPR151 coupled with P2X3 ion channels and promoted their functional activities in neuropathic pain-like hypersensitivity. Knockout of Gpr151 suppressed P2X3-mediated calcium elevation and spontaneous pain behaviour in chronic constriction injury mice. Conversely, overexpression of Gpr151 significantly enhanced P2X3-mediated calcium elevation and dorsal root ganglion neuronal excitability. Furthermore, knockdown of P2X3 in dorsal root ganglia reversed chronic constriction injury-induced CSF1 upregulation, spinal microglial activation and neuropathic pain-like behaviour. Finally, the coexpression of GPR151 and P2X3 was confirmed in small-diameter human dorsal root ganglion neurons, indicating the clinical relevance of our findings. Together, our results indicate that GPR151 in nociceptive dorsal root ganglion neurons plays a key role in the pathogenesis of neuropathic pain and could be a potential target for treating neuropathic pain.


Assuntos
Microglia/metabolismo , Neuralgia/metabolismo , Nociceptores/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Animais , Gânglios Espinais/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
J Neurosci ; 39(31): 6202-6215, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31152125

RESUMO

Mechanical allodynia is a cardinal feature of pathological pain. Recent work has demonstrated the necessity of Aß-low-threshold mechanoreceptors (Aß-LTMRs) for mechanical allodynia-like behaviors in mice, but it remains unclear whether these neurons are sufficient to produce pain under pathological conditions. We generated a transgenic mouse in which channelrhodopsin-2 (ChR2) is conditionally expressed in vesicular glutamate transporter 1 (Vglut1) sensory neurons (Vglut1-ChR2), which is a heterogeneous population of large-sized sensory neurons with features consistent with Aß-LTMRs. In naive male Vglut1-ChR2 mice, transdermal hindpaw photostimulation evoked withdrawal behaviors in an intensity- and frequency-dependent manner, which were abolished by local anesthetic and selective A-fiber blockade. Surprisingly, male Vglut1-ChR2 mice did not show significant differences in light-evoked behaviors or real-time aversion after nerve injury despite marked hypersensitivity to punctate mechanical stimuli. We conclude that optogenetic activation of cutaneous Vglut1-ChR2 neurons alone is not sufficient to produce pain-like behaviors in neuropathic mice.SIGNIFICANCE STATEMENT Mechanical allodynia, in which innocuous touch is perceived as pain, is a common feature of pathological pain. To test the contribution of low-threshold mechanoreceptors (LTMRs) to nerve-injury-induced mechanical allodynia, we generated and characterized a new transgenic mouse (Vglut1-ChR2) to optogenetically activate cutaneous vesicular glutamate transporter 1 (Vglut1)-positive LTMRs. Using this mouse, we found that light-evoked behaviors were unchanged by nerve injury, which suggests that activation of Vglut1-positive LTMRs alone is not sufficient to produce pain. The Vglut1-ChR2 mouse will be broadly useful for the study of touch, pain, and itch.


Assuntos
Hiperalgesia/fisiopatologia , Mecanorreceptores/fisiologia , Neuralgia/fisiopatologia , Células Receptoras Sensoriais/fisiologia , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Optogenética/métodos , Traumatismos dos Nervos Periféricos
4.
J Biol Chem ; 289(19): 13385-96, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24659779

RESUMO

The chemerin receptor (CMKLR1) is a G protein-coupled receptor found on select immune, epithelial, and dorsal root ganglion/spinal cord neuronal cells. CMKLR1 is primarily coupled to the inhibitory G protein, Gαi, and has been shown to modulate the resolution of inflammation and neuropathic pain. CMKLR1 is activated by both lipid and peptide agonists, resolvin E1 and chemerin, respectively. Notably, these ligands have short half-lives. To expedite the development of long acting, stable chemerin analogs as candidate therapeutics, we used membrane-tethered ligand technology. Membrane-tethered ligands are recombinant proteins comprised of an extracellular peptide ligand, a linker sequence, and an anchoring transmembrane domain. Using this technology, we established that a 9-amino acid-tethered chemerin fragment (amino acids 149-157) activates both mouse and human CMKLR1 with efficacy exceeding that of the full-length peptide (amino acids 21-157). To enable in vivo delivery of a corresponding soluble membrane anchored ligand, we generated lipidated analogs of the 9-amino acid fragment. Pharmacological assessment revealed high potency and wash resistance (an index of membrane anchoring). When tested in vivo, a chemerin SMAL decreased allergic airway inflammation and attenuated neuropathic pain in mice. This compound provides a prototype membrane-anchored peptide for the treatment of inflammatory disease. A parallel approach may be applied to developing therapeutics targeting other peptide hormone G protein-coupled receptors.


Assuntos
Asma/tratamento farmacológico , Quimiocinas/farmacologia , Fatores Quimiotáticos/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Neuralgia/tratamento farmacológico , Peptídeos/farmacologia , Receptores de Quimiocinas/agonistas , Receptores Acoplados a Proteínas G/agonistas , Animais , Asma/genética , Asma/metabolismo , Quimiocinas/química , Quimiocinas/genética , Fatores Quimiotáticos/química , Fatores Quimiotáticos/genética , Células HEK293 , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos , Neuralgia/genética , Neuralgia/metabolismo , Peptídeos/química , Peptídeos/genética , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
5.
Ann Neurol ; 74(3): 490-5, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23686636

RESUMO

Prevalence of neuropathic pain is high after major surgery. However, effective treatment for preventing neuropathic pain is lacking. Here we report that perisurgical treatment of neuroprotectin D1/protectin D1 (NPD1/PD1), derived from docosahexaenoic acid, prevents nerve injury-induced mechanical allodynia and ongoing pain in mice. Intrathecal post-treatment of NPD1/PD1 also effectively reduces established neuropathic pain and produces no apparent signs of analgesic tolerance. Mechanistically, NPD1/PD1 treatment blocks nerve injury-induced long-term potentiation, glial reaction, and inflammatory responses, and reverses synaptic plasticity in the spinal cord. Thus, NPD1/PD1 and related mimetics might serve as a new class of analgesics for preventing and treating neuropathic pain.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Neuralgia/prevenção & controle , Traumatismos dos Nervos Periféricos/complicações , Nervo Isquiático/lesões , Animais , Ácidos Docosa-Hexaenoicos/uso terapêutico , Camundongos , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Medição da Dor , Traumatismos dos Nervos Periféricos/fisiopatologia , Nervo Isquiático/fisiopatologia , Medula Espinal/efeitos dos fármacos
6.
Cell Discov ; 10(1): 66, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38886367

RESUMO

Thermosensation is vital for the survival, propagation, and adaption of all organisms, but its mechanism is not fully understood yet. Here, we find that TMC6, a membrane protein of unknown function, is highly expressed in dorsal root ganglion (DRG) neurons and functions as a Gαq-coupled G protein-coupled receptor (GPCR)-like receptor to sense noxious heat. TMC6-deficient mice display a substantial impairment in noxious heat sensation while maintaining normal perception of cold, warmth, touch, and mechanical pain. Further studies show that TMC6 interacts with Gαq via its intracellular C-terminal region spanning Ser780 to Pro810. Specifically disrupting such interaction using polypeptide in DRG neurons, genetically ablating Gαq, or pharmacologically blocking Gαq-coupled GPCR signaling can replicate the phenotype of TMC6 deficient mice regarding noxious heat sensation. Noxious heat stimulation triggers intracellular calcium release from the endoplasmic reticulum (ER) of TMC6- but not control vector-transfected HEK293T cell, which can be significantly inhibited by blocking PLC or IP3R. Consistently, noxious heat-induced intracellular Ca2+ release from ER and action potentials of DRG neurons largely reduced when ablating TMC6 or blocking Gαq/PLC/IP3R signaling pathway as well. In summary, our findings indicate that TMC6 can directly function as a Gαq-coupled GPCR-like receptor sensing noxious heat.

7.
J Neurosci ; 32(18): 6364-72, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22553041

RESUMO

Epoxyeicosatrienoic acids (EETs) are cytochrome P450-epoxygenase-derived metabolites of arachidonic acid that act as endogenous signaling molecules in multiple biological systems. Here we have investigated the specific contribution of 5,6-EET to transient receptor potential (TRP) channel activation in nociceptor neurons and its consequence for nociceptive processing. We found that, during capsaicin-induced nociception, 5,6-EET levels increased in dorsal root ganglia (DRGs) and the dorsal spinal cord, and 5,6-EET is released from activated sensory neurons in vitro. 5,6-EET potently induced a calcium flux (100 nm) in cultured DRG neurons that was completely abolished when TRPA1 was deleted or inhibited. In spinal cord slices, 5,6-EET dose dependently enhanced the frequency, but not the amplitude, of spontaneous EPSCs (sEPSCs) in lamina II neurons that also responded to mustard oil (allyl isothiocyanate), indicating a presynaptic action. Furthermore, 5,6-EET-induced enhancement of sEPSC frequency was abolished in TRPA1-null mice, suggesting that 5,6-EET presynaptically facilitated spinal cord synaptic transmission by TRPA1. Finally, in vivo intrathecal injection of 5,6-EET caused mechanical allodynia in wild-type but not TRPA1-null mice. We conclude that 5,6-EET is synthesized on the acute activation of nociceptors and can produce mechanical hypersensitivity via TRPA1 at central afferent terminals in the spinal cord.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Potenciais de Ação/fisiologia , Vias Aferentes/fisiopatologia , Hiperalgesia/fisiopatologia , Células Receptoras Sensoriais/metabolismo , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
FASEB J ; 26(4): 1755-65, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22253477

RESUMO

Self-resolving inflammatory exudates and lipid mediator metabolomics recently uncovered a new family of potent anti-inflammatory and proresolving mediators biosynthesized by macrophages (MΦs), denoted maresins. Here we determined that maresin 1 (MaR1) produced by human MΦs from endogenous docosahexaenoic acid (DHA) matched synthetic 7R,14S-dihydroxydocosa-4Z,8E,10E,12Z,16Z,19Z-hexaenoic acid. The MaR1 alcohol groups and Z/E geometry of conjugated double bonds were matched using isomers prepared by total organic synthesis. MaR1's potent defining actions were confirmed with synthetic MaR1, i.e., limiting polymorphonuclear neutrophil (PMN) infiltration in murine peritonitis (ng/mouse range) as well as enhancing human macrophage uptake of apoptotic PMNs. At 1 nM, MaR1 was slightly more potent than resolvin D1 in stimulating human MΦ efferocytosis, an action not shared by leukotriene B(4). MaR1 also accelerated surgical regeneration in planaria, increasing the rate of head reappearance. On injury of planaria, MaR1 was biosynthesized from deuterium-labeled (d(5))-DHA that was blocked with lipoxygenase (LOX) inhibitor. MaR1 dose-dependently inhibited TRPV1 currents in neurons, blocked capsaicin (100 nM)-induced inward currents (IC(50) 0.49±0.02 nM), and reduced both inflammation- and chemotherapy-induced neuropathic pain in mice. These results demonstrate the potent actions of MaR1 in regulating inflammation resolution, tissue regeneration, and pain resolution. These findings suggest that chemical signals are shared in resolution cellular trafficking, a key process in tissue regeneration. Moreover, immunoresolvents of the innate immune response, such as MaR1, offer new opportunities for assessing MΦs and their local DHA metabolome in the return to tissue homeostasis.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Macrófagos/metabolismo , Dor/tratamento farmacológico , Regeneração/efeitos dos fármacos , Animais , Comportamento Animal/fisiologia , Cromatografia Líquida/métodos , Ácidos Docosa-Hexaenoicos/química , Ácidos Docosa-Hexaenoicos/metabolismo , Gânglios Espinais/citologia , Humanos , Masculino , Metabolômica/métodos , Camundongos , Estrutura Molecular , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Medição da Dor , Técnicas de Patch-Clamp , Planárias/anatomia & histologia , Planárias/efeitos dos fármacos , Planárias/fisiologia , Regeneração/fisiologia , Canais de Cátion TRPV/metabolismo , Espectrometria de Massas em Tandem/métodos
9.
Cell Rep ; 42(2): 112133, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36800288

RESUMO

Expansion of the hexanucleotide repeat GGGGCC in the C9orf72 gene is the most common genetic factor in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Poly-Gly-Ala (poly-GA), one form of dipeptide repeat proteins (DPRs) produced from GGGGCC repeats, tends to form neurotoxic protein aggregates. The C9orf72 GGGGCC repeats and microglial receptor TREM2 are both associated with risk for ALS/FTD. The role and regulation of TREM2 in C9orf72-ALS/FTD remain unclear. Here, we found that poly-GA proteins activate the microglial NLRP3 inflammasome to produce interleukin-1ß (IL-1ß), which promotes ADAM10-mediated TREM2 cleavage and inhibits phagocytosis of poly-GA. The inhibitor of the NLRP3 inflammasome, MCC950, reduces the TREM2 cleavage and poly-GA aggregates, resulting in the alleviation of motor deficits in poly-GA mice. Our study identifies a crosstalk between NLRP3 and TREM2 signaling, suggesting that targeting the NLRP3 inflammasome to sustain TREM2 is an approach to treat C9orf72-ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Camundongos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Dipeptídeos/metabolismo , Expansão das Repetições de DNA , Demência Frontotemporal/genética , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas/genética
10.
Nat Commun ; 14(1): 4, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596769

RESUMO

Transient receptor potential vanilloid 1 (TRPV1) ion channel is a classic analgesic target, but antagonists of TRPV1 failed in clinical trials due to their side effects like hyperthermia. Here we rationally engineer a peptide s-RhTx as a positive allosteric modulator (PAM) of TRPV1. Patch-clamp recordings demonstrate s-RhTx selectively potentiated TRPV1 activation. s-RhTx also slows down capsaicin-induced desensitization of TRPV1 in the presence of calcium to cause more calcium influx in TRPV1-expressing cells. In addition, our thermodynamic mutant cycle analysis shows that E652 in TRPV1 outer pore specifically interacts with R12 and K22 in s-RhTx. Furthermore, we demonstrate in vivo that s-RhTx exhibits long-lasting analgesic effects in noxious heat hyperalgesia and CFA-induced chronic inflammatory pain by promoting the reversible degeneration of intra-epidermal nerve fiber (IENF) expressing TRPV1 channels in mice, while their body temperature remains unaffected. Our results suggest s-RhTx is an analgesic agent as a PAM of TRPV1.


Assuntos
Analgesia , Canais de Potencial de Receptor Transitório , Camundongos , Animais , Cálcio , Canais de Cátion TRPV/genética , Dor/tratamento farmacológico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Capsaicina/farmacologia , Peptídeos/farmacologia , Peptídeos/uso terapêutico
11.
J Neurosci ; 31(42): 15072-85, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22016541

RESUMO

Mechanisms of inflammatory pain are not fully understood. We investigated the role of TRPV1 (transient receptor potential subtype V1) and TNF-α, two critical mediators for inflammatory pain, in regulating spinal cord synaptic transmission. We found in mice lacking Trpv1 the frequency but not the amplitude of spontaneous EPSCs (sEPSCs) in lamina II neurons of spinal cord slices is reduced. Further, C-fiber-induced spinal long-term potentiation (LTP) in vivo is abolished in Trpv1 knock-out mice. TNF-α also increases sEPSC frequency but not amplitude in spinal outer lamina II (lamina IIo) neurons, and this increase is abolished in Trpv1 knock-out mice. Single-cell PCR analysis revealed that TNF-α-responding neurons in lamina IIo are exclusively excitatory (vGluT2(+)) neurons. Notably, neuroprotectin-1 (NPD1), an anti-inflammatory lipid mediator derived from ω-3 polyunsaturated fatty acid (docosahexaenoic acid), blocks TNF-α- and capsaicin-evoked sEPSC frequency increases but has no effect on basal synaptic transmission. Strikingly, NPD1 potently inhibits capsaicin-induced TRPV1 current (IC(50) = 0.4 nm) in dissociated dorsal root ganglion neurons, and this IC(50) is ≈ 500 times lower than that of AMG9810, a commonly used TRPV1 antagonist. NPD1 inhibition of TRPV1 is mediated by GPCRs, since the effects were blocked by pertussis toxin. In contrast, NPD1 had no effect on mustard oil-induced TRPA1 currents. Spinal injection of NPD1, at very low doses (0.1-10 ng), blocks spinal LTP and reduces TRPV1-dependent inflammatory pain, without affecting baseline pain. NPD1 also reduces TRPV1-independent but TNF-α-dependent pain hypersensitivity. Our findings demonstrate a novel role of NPD1 in regulating TRPV1/TNF-α-mediated spinal synaptic plasticity and identify NPD1 as a novel analgesic for treating inflammatory pain.


Assuntos
Ácidos Docosa-Hexaenoicos/uso terapêutico , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/genética , Neurônios/efeitos dos fármacos , Dor/tratamento farmacológico , Medula Espinal/patologia , Canais de Cátion TRPV/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Acrilamidas , Análise de Variância , Animais , Compostos Bicíclicos Heterocíclicos com Pontes , Células Cultivadas , Modelos Animais de Doenças , Inibidores Enzimáticos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Adjuvante de Freund/efeitos adversos , Gânglios Espinais/citologia , Técnicas In Vitro , Inflamação/induzido quimicamente , Inflamação/complicações , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Dor/etiologia , Dor/patologia , Medição da Dor , Técnicas de Patch-Clamp , Receptores do Fator de Necrose Tumoral/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/deficiência
12.
J Neurosci ; 31(50): 18433-8, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22171045

RESUMO

Inflammatory pain such as arthritic pain is typically treated with opioids and cyclo-oxygenase-2 inhibitors with well known side effects. Transient receptor potential subtype vanilloid 1 (TRPV1) and TRP ankyryn 1 (TRPA1) contribute importantly to the genesis of inflammatory pain via both peripheral mechanisms (peripheral sensitization) and spinal cord mechanisms (central sensitization). Although these TRP channels have been intensively studied, little is known about their endogenous inhibitors. Recent studies have demonstrated that the endogenous lipid mediators resolvins (RvE1 and RvD1), derived from ω-3 unsaturated fatty acids, are potent inhibitors for inflammatory pain, without noticeable side effects. However, the molecular mechanisms underlying resolvins' distinct analgesic actions in mice are unclear. RvD2 is a novel family member of resolvins. Here we report that RvD2 is a remarkably potent inhibitor of TRPV1 (IC(50) = 0.1 nm) and TRPA1 (IC(50) = 2 nm) in primary sensory neurons, whereas RvE1 and RvD1 selectively inhibited TRPV1 (IC(50) = 1 nm) and TRPA1 (IC(50) = 9 nm), respectively. Accordingly, RvD2, RvE1, and RvD1 differentially regulated TRPV1 and TRPA1 agonist-elicited acute pain and spinal cord synaptic plasticity [spontaneous EPSC (sEPSC) frequency increase]. RvD2 also abolished inflammation-induced sEPSC increases (frequency and amplitude), without affecting basal synaptic transmission. Intrathecal administration of RvD2 at very low doses (0.01-1 ng) prevented formalin-induced spontaneous pain. Intrathecal RvD2 also reversed adjuvant-induced inflammatory pain without altering baseline pain and motor function. Finally, intrathecal RvD2 reversed C-fiber stimulation-evoked long-term potentiation in the spinal cord. Our findings suggest distinct roles of resolvins in regulating TRP channels and identify RvD2 as a potent endogenous inhibitor for TRPV1/TRPA1 and inflammatory pain.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/análogos & derivados , Inflamação/metabolismo , Plasticidade Neuronal/fisiologia , Dor/metabolismo , Medula Espinal/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Masculino , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Medula Espinal/efeitos dos fármacos
13.
Mol Pain ; 8: 18, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-22439811

RESUMO

BACKGROUND: Activation of spinal cord glial cells such as microglia and astrocytes has been shown to regulate chronic opioid-induced antinociceptive tolerance and hyperalgesia, due to spinal up-regulation of the proinflammatory cytokines such as interleukin-1 beta (IL-1ß). Matrix metalloprotease-9 (MMP-9) has been implicated in IL-1ß activation in neuropathic pain. However, it is unclear whether acute opioid treatment can activate glial cells in the peripheral nervous system. We examined acute morphine-induced activation of satellite glial cells (SGCs) and up-regulation of IL-1ß in dorsal root ganglia (DRGs), and further investigated the involvement of MMP-9 in these opioid-induced peripheral changes. RESULTS: Subcutaneous morphine injection (10 mg/kg) induced robust peripheral glial responses, as evidenced by increased GFAP expression in DRGs but not in spinal cords. The acute morphine-induced GFAP expression is transient, peaking at 2 h and declining after 3 h. Acute morphine treatment also increased IL-1ß immunoreactivity in SGCs and IL-1ß activation in DRGs. MMP-9 and GFAP are expressed in DRG neurons and SGCs, respectively. Confocal analysis revealed a close proximity of MMP-9 and GFAP immunostaining. Importantly, morphine-induced DRG up-regulation of GFAP expression and IL-1ß activation was abolished after Mmp9 deletion or naloxone pre-treatment. Finally, intrathecal injections of IL-1ß-selective siRNA not only reduced DRG IL-1ß expression but also prolonged acute morphine-induced analgesia. CONCLUSIONS: Acute morphine induces opioid receptors- and MMP-9-dependent up-regulation of GFAP expression and IL-1ß activation in SGCs of DRGs. MMP-9 could mask and shorten morphine analgesia via peripheral neuron-glial interactions. Targeting peripheral glial activation might prolong acute opioid analgesia.


Assuntos
Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Interleucina-1beta/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Morfina/farmacologia , Neuroglia/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Western Blotting , Imuno-Histoquímica , Masculino , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Knockout , Neuroglia/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real
14.
JCI Insight ; 7(22)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36194480

RESUMO

Neuropathic pain is a refractory condition that involves de novo protein synthesis in the nociceptive pathway. The mTOR is a master regulator of protein translation; however, mechanisms underlying its role in neuropathic pain remain elusive. Using the spared nerve injury-induced neuropathic pain model, we found that mTOR was preferentially activated in large-diameter dorsal root ganglion (DRG) neurons and spinal microglia. However, selective ablation of mTOR in DRG neurons, rather than microglia, alleviated acute neuropathic pain in mice. We show that injury-induced mTOR activation promoted the transcriptional induction of neuropeptide Y (Npy), likely via signal transducer and activator of transcription 3 phosphorylation. NPY further acted primarily on Y2 receptors (Y2R) to enhance neuronal excitability. Peripheral replenishment of NPY reversed pain alleviation upon mTOR removal, whereas Y2R antagonists prevented pain restoration. Our findings reveal an unexpected link between mTOR and NPY/Y2R in promoting nociceptor sensitization and neuropathic pain.


Assuntos
Neuralgia , Neuropeptídeo Y , Animais , Camundongos , Gânglios Espinais/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Neuropeptídeo Y/metabolismo , Nociceptores/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Serina-Treonina Quinases TOR/metabolismo
15.
Sci Transl Med ; 14(639): eabh2557, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35385340

RESUMO

Diabetic neuropathic pain (DNP) is a common and devastating complication in patients with diabetes. The mechanisms mediating DNP are not completely elucidated, and effective treatments are lacking. A-fiber sensory neurons have been shown to mediate the development of mechanical allodynia in neuropathic pain, yet the molecular basis underlying the contribution of A-fiber neurons is still unclear. Here, we report that the orphan G protein-coupled receptor 177 (GPR177) in A-fiber neurons drives DNP via WNT5a-mediated activation of transient receptor potential vanilloid receptor-1 (TRPV1) ion channel. GPR177 is mainly expressed in large-diameter A-fiber dorsal root ganglion (DRG) neurons and required for the development of DNP in mice. Mechanistically, we found that GPR177 mediated the secretion of WNT5a from A-fiber DRG neurons into cerebrospinal fluid (CSF), which was necessary for the maintenance of DNP. Extracellular perfusion of WNT5a induced rapid currents in both TRPV1-expressing heterologous cells and nociceptive DRG neurons. Computer simulations revealed that WNT5a has the potential to bind the residues at the extracellular S5-S6 loop of TRPV1. Using a peptide able to disrupt the predicted WNT5a/TRPV1 interaction suppressed DNP- and WNT5a-induced neuropathic pain symptoms in rodents. We confirmed GPR177/WNT5A coexpression in human DRG neurons and WNT5A secretion in CSF from patients with DNP. Thus, our results reveal a role for WNT5a as an endogenous and potent TRPV1 agonist, and the GPR177-WNT5a-TRPV1 axis as a driver of DNP pathogenesis in rodents. Our findings identified a potential analgesic target that might relieve neuropathic pain in patients with diabetes.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Peptídeos e Proteínas de Sinalização Intracelular , Neuralgia , Receptores Acoplados a Proteínas G , Canais de Cátion TRPV , Proteína Wnt-5a , Animais , Diabetes Mellitus/metabolismo , Neuropatias Diabéticas/metabolismo , Gânglios Espinais/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Neuralgia/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPV/metabolismo , Proteína Wnt-5a/metabolismo
16.
Adv Sci (Weinh) ; 8(22): e2101717, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34658162

RESUMO

Platinum-based compounds in chemotherapy such as oxaliplatin often induce peripheral neuropathy and neuropathic pain such as cold allodynia in patients. Transient Receptor Potential Melastatin 8 (TRPM8) ion channel is a nociceptor critically involved in such pathological processes. Direct blockade of TRPM8 exhibits significant analgesic effects but also incurs severe side effects such as hypothermia. To selectively target TRPM8 channels against cold allodynia, a cyclic peptide DeC-1.2 is de novo designed with the optimized hot-spot centric approach. DeC-1.2 modality specifically inhibited the ligand activation of TRPM8 but not the cold activation as measured in single-channel patch clamp recordings. It is further demonstrated that DeC-1.2 abolishes cold allodynia in oxaliplatin treated mice without altering body temperature, indicating DeC-1.2 has the potential for further development as a novel analgesic against oxaliplatin-induced neuropathic pain.


Assuntos
Antineoplásicos/efeitos adversos , Hiperalgesia/prevenção & controle , Oxaliplatina/efeitos adversos , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/genética , Animais , Antineoplásicos/metabolismo , Temperatura Baixa , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Masculino , Camundongos , Oxaliplatina/metabolismo , Canais de Cátion TRPM/metabolismo
17.
J Neurosci ; 29(13): 4096-108, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19339605

RESUMO

Our previous study showed that activation of c-jun-N-terminal kinase (JNK) in spinal astrocytes plays an important role in neuropathic pain sensitization. We further investigated how JNK regulates neuropathic pain. In cultured astrocytes, tumor necrosis factor alpha (TNF-alpha) transiently activated JNK via TNF receptor-1. Cytokine array indicated that the chemokine CCL2/MCP-1 (monocyte chemoattractant protein-1) was strongly induced by the TNF-alpha/JNK pathway. MCP-1 upregulation by TNF-alpha was dose dependently inhibited by the JNK inhibitors SP600125 (anthra[1,9-cd]pyrazol-6(2H)-one) and D-JNKI-1. Spinal injection of TNF-alpha produced JNK-dependent pain hypersensitivity and MCP-1 upregulation in the spinal cord. Furthermore, spinal nerve ligation (SNL) induced persistent neuropathic pain and MCP-1 upregulation in the spinal cord, and both were suppressed by D-JNKI-1. Remarkably, MCP-1 was primarily induced in spinal cord astrocytes after SNL. Spinal administration of MCP-1 neutralizing antibody attenuated neuropathic pain. Conversely, spinal application of MCP-1 induced heat hyperalgesia and phosphorylation of extracellular signal-regulated kinase in superficial spinal cord dorsal horn neurons, indicative of central sensitization (hyperactivity of dorsal horn neurons). Patch-clamp recordings in lamina II neurons of isolated spinal cord slices showed that MCP-1 not only enhanced spontaneous EPSCs but also potentiated NMDA- and AMPA-induced currents. Finally, the MCP-1 receptor CCR2 was expressed in neurons and some non-neuronal cells in the spinal cord. Together, we have revealed a previously unknown mechanism of MCP-1 induction and action. MCP-1 induction in astrocytes after JNK activation contributes to central sensitization and neuropathic pain facilitation by enhancing excitatory synaptic transmission. Inhibition of the JNK/MCP-1 pathway may provide a new therapy for neuropathic pain management.


Assuntos
Astrócitos/metabolismo , Quimiocina CCL2/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Neuralgia/metabolismo , Neuralgia/patologia , Limiar da Dor/fisiologia , Medula Espinal/patologia , Análise de Variância , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Quimiocina CCL2/farmacologia , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática/métodos , Agonistas de Aminoácidos Excitatórios/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Indóis/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp/métodos , Tempo de Reação/efeitos dos fármacos , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Medula Espinal/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Fatores de Tempo , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima/efeitos dos fármacos
18.
J Neurosci ; 28(19): 5072-81, 2008 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-18463260

RESUMO

To provide a tool to investigate the mechanisms inducing and maintaining cancer-related pain and hyperalgesia, a soft tissue tumor/metastasis model was developed that is applicable in C57BL/6J wild-type and transgenic mice. We show that the experimental tumor-induced heat hyperalgesia and nociceptor sensitization were prevented by systemic treatment with the tumor necrosis factor alpha (TNFalpha) antagonist etanercept. In naive mice, exogenous TNFalpha evoked heat hyperalgesia in vivo and sensitized nociceptive nerve fibers to heat in vitro. TNFalpha enhanced the expression of the nociceptor-specific heat transducer ion channel transient receptor potential vanilloid 1 (TRPV1) and increased the amplitudes of capsaicin and heat-activated ionic currents via p38/MAP (mitogen-activated protein) kinase and PKC (protein kinase C). Deletion of the tumor necrosis factor receptor type 2 (TNFR2) gene attenuated heat hyperalgesia and prevented TRPV1 upregulation in tumor-bearing mice, whereas TNFR1 gene deletion played a minor role. We propose endogenous TNFalpha as a key player in cancer-related heat hyperalgesia and nociceptor sensitization that generates TRPV1 upregulation and sensitization via TNFR2.


Assuntos
Carcinoma/complicações , Carcinoma/metabolismo , Hiperalgesia/etiologia , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Capsaicina/farmacologia , Células Cultivadas , Etanercepte , Deleção de Genes , Membro Posterior , Temperatura Alta , Hiperalgesia/induzido quimicamente , Hiperalgesia/fisiopatologia , Hiperalgesia/prevenção & controle , Imunoglobulina G/farmacologia , Camundongos , Transplante de Neoplasias , Neurônios Aferentes/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Nociceptores/fisiopatologia , Técnicas de Patch-Clamp , Receptores do Fator de Necrose Tumoral , Receptores Tipo II do Fator de Necrose Tumoral/genética , Canais de Cátion TRPV/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima
19.
Cell Rep ; 29(8): 2384-2397.e5, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31747607

RESUMO

The proinflammatory cytokine interleukin-17 (IL-17) is implicated in pain regulation. However, the synaptic mechanisms by which IL-17 regulates pain transmission are unknown. Here, we report that glia-produced IL-17 suppresses inhibitory synaptic transmission in the spinal cord pain circuit and drives chemotherapy-induced neuropathic pain. We find that IL-17 not only enhances excitatory postsynaptic currents (EPSCs) but also suppresses inhibitory postsynaptic synaptic currents (IPSCs) and GABA-induced currents in lamina IIo somatostatin-expressing neurons in mouse spinal cord slices. IL-17 mainly expresses in spinal cord astrocytes, and its receptor IL-17R is detected in somatostatin-expressing neurons. Selective knockdown of IL-17R in spinal somatostatin-expressing interneurons reduces paclitaxel-induced hypersensitivity. Overexpression of IL-17 in spinal astrocytes is sufficient to induce mechanical allodynia in naive animals. In dorsal root ganglia, IL-17R expression in nociceptive sensory neurons is sufficient and required for inducing neuronal hyperexcitability after paclitaxel. Together, our data show that IL-17/IL-17R mediate neuron-glial interactions and neuronal hyperexcitability in chemotherapy-induced peripheral neuropathy.


Assuntos
Interleucina-17/metabolismo , Neuralgia/metabolismo , Transmissão Sináptica/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Humanos , Neuralgia/fisiopatologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Somatostatina/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia
20.
Neuron ; 37(1): 121-33, 2003 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-12526778

RESUMO

Here we describe a novel mechanism for plasma membrane insertion of the delta opioid receptor (DOR). In small dorsal root ganglion neurons, only low levels of DORs are present on the cell surface, in contrast to high levels of intracellular DORs mainly associated with vesicles containing calcitonin gene-related peptide (CGRP). Activation of surface DORs caused Ca(2+) release from IP(3)-sensitive stores and Ca(2+) entry, resulting in a slow and long-lasting exocytosis, DOR insertion, and CGRP release. In contrast, membrane depolarization or activation of vanilloid and P2Y(1) receptors induced a rapid DOR insertion. Thus, DOR activation induces a Ca(2+)-dependent insertion of DORs that is coupled to a release of excitatory neuropeptides, suggesting that treatment of inflammatory pain should include blockade of DORs.


Assuntos
Membrana Celular/metabolismo , Exocitose/fisiologia , Gânglios Espinais/metabolismo , Neurônios Aferentes/metabolismo , Nociceptores/metabolismo , Receptores Opioides delta/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Exocitose/efeitos dos fármacos , Imunofluorescência , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/ultraestrutura , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/ultraestrutura , Neuropeptídeos/metabolismo , Nociceptores/efeitos dos fármacos , Nociceptores/ultraestrutura , Células PC12 , Dor/metabolismo , Dor/fisiopatologia , Ratos , Receptores de Droga/efeitos dos fármacos , Receptores de Droga/metabolismo , Receptores de Neurotransmissores/efeitos dos fármacos , Receptores de Neurotransmissores/metabolismo , Receptores Opioides delta/efeitos dos fármacos , Receptores Purinérgicos P2/efeitos dos fármacos , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y1 , Vesículas Secretórias/metabolismo , Vesículas Secretórias/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA