Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(19): e2318652121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38687781

RESUMO

Water oxidation on magnetic catalysts has generated significant interest due to the spin-polarization effect. Recent studies have revealed that the disappearance of magnetic domain wall upon magnetization is responsible for the observed oxygen evolution reaction (OER) enhancement. However, an atomic picture of the reaction pathway remains unclear, i.e., which reaction pathway benefits most from spin-polarization, the adsorbent evolution mechanism, the intermolecular mechanism (I2M), the lattice oxygen-mediated one, or more? Here, using three model catalysts with distinguished atomic chemistries of active sites, we are able to reveal the atomic-level mechanism. We found that spin-polarized OER mainly occurs at interconnected active sites, which favors direct coupling of neighboring ligand oxygens (I2M). Furthermore, our study reveals the crucial role of lattice oxygen participation in spin-polarized OER, significantly facilitating the coupling kinetics of neighboring oxygen radicals at active sites.

2.
Small ; 20(27): e2311771, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38268308

RESUMO

Insufficient thermal stability of vanadium redox flow battery (VRFB) electrolytes at elevated temperatures (>40 °C) remains a challenge in the development and commercialization of this technology, which otherwise presents a broad range of technological advantages for the long-term storage of intermittent renewable energy. Herein, a new concept of combined additives is presented, which significantly increases thermal stability of the battery, enabling safe operation to the highest temperature (50 °C) tested to date. This is achieved by combining two chemically distinct additives-inorganic ammonium phosphate and polyvinylpyrrolidone (PVP) surfactant, which collectively decelerate both protonation and agglomeration of the oxo-vanadium species in solution and thereby significantly suppress detrimental formation of precipitates. Specifically, the precipitation rate is reduced by nearly 75% under static conditions at 50° C. This improvement is reflected in the robust operation of a complete VRFB device for over 300 h of continuous operation at 50 °C, achieving an impressive 83% voltage efficiency at 100 mA cm‒2 current density, with no precipitation detected in either the electrode/flow-frame or electrolyte tank.

3.
Angew Chem Int Ed Engl ; 63(15): e202320027, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38317616

RESUMO

Ammonia (NH3) is pivotal in modern industry and represents a promising next-generation carbon-free energy carrier. Electrocatalytic nitrate reduction reaction (eNO3RR) presents viable solutions for NH3 production and removal of ambient nitrate pollutants. However, the development of eNO3RR is hindered by lacking the efficient electrocatalysts. To address this challenge, we synthesized a series of macrocyclic molecular catalysts for the heterogeneous eNO3RR. These materials possess different coordination environments around metal centers by surrounding subunits. Consequently, electronic structures of the active centers can be altered, enabling tunable activity towards eNO3RR. Our investigation reveals that metal center with an N2(pyrrole)-N2(pyridine) configuration demonstrates superior activity over the others and achieves a high NH3 Faradaic efficiency (FE) of over 90 % within the tested range, where the highest FE of approximately 94 % is obtained. Furthermore, it achieves a production rate of 11.28 mg mgcat -1 h-1, and a turnover frequency of up to 3.28 s-1. Further tests disclose that these molecular catalysts with diverse coordination environments showed different magnetic moments. Theoretical calculation results indicate that variated coordination environments can result in a d-band center variation which eventually affects rate-determining step energy and calculated magnetic moments, thus establishing a correlation between electronic structure, experimental activity, and computational parameters.

4.
Angew Chem Int Ed Engl ; : e202402184, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750660

RESUMO

Water electrolysis is one promising and eco-friendly technique for energy storage, yet its overall efficiency is hindered by the sluggish kinetics of oxygen evolution reaction (OER). Therefore, developing strategies to boost OER catalyst performance is crucial. With the advances in characterization techniques, an extensive phenomenon of surface structure evolution into an active amorphous layer was uncovered. Surface reconstruction in a controlled fashion was then proposed as an emerging strategy to elevate water oxidation efficiency. In this work, Cr substitution induces the reconstruction of NiFexCr2-xO4 during cyclic voltammetry (CV) conditioning by Cr leaching, which leads to a superior OER performance. The best-performed NiFe0.25Cr1.75O4 shows a ~1500 % current density promotion at overpotential η=300 mV, which outperforms many advanced NiFe-based OER catalysts. It is also found that their OER activities are mainly determined by Ni : Fe ratio rather than considering the contribution of Cr. Meanwhile, the turnover frequency (TOF) values based on redox peak and total mass were obtained and analysed, and their possible limitations in the case of NiFexCr2-xO4 are discussed. Additionally, the high activity and durability were further verified in a membrane electrode assembly (MEA) cell, highlighting its potential for practical large-scale and sustainable hydrogen gas generation.

5.
Angew Chem Int Ed Engl ; 63(11): e202317957, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38270335

RESUMO

Weak adsorption of gas reactants and strong binding of intermediates present a significant challenge for most transition metal oxides, particularly in the realm of CO2 photoreduction. Herein, we demonstrate that the adsorption can be fine-tuned by phase engineering of oxide catalysts. An oxygen vacancy mediated topological phase transition in Ni-Co oxide nanowires, supported on a hierarchical graphene aerogel (GA), is observed from a spinel phase to a rock-salt phase. Such in situ phase transition empowers the Ni-Co oxide catalyst with a strong internal electric field and the attainment of abundant oxygen vacancies. Among a series of catalysts, the in situ transformed spinel/rock-salt heterojunction supported on GA stands out for an exceptional photocatalytic CO2 reduction activity and selectivity, yielding an impressive CO production rate of 12.5 mmol g-1 h-1 and high selectivity of 96.5 %. This remarkable performance is a result of the robust interfacial coupling between two topological phases that optimizes the electronic structures through directional charge transfer across interfaces. The phase transition process induces more Co2+ in octahedral site, which can effectively enhance the Co-O covalency. This synergistic effect balances the surface activation of CO2 molecules and desorption of reaction intermediates, thereby lowering the energetic barrier of the rate-limiting step.

6.
Angew Chem Int Ed Engl ; 63(7): e202315119, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38129317

RESUMO

Alleviating the degradation issue of Pt based alloy catalysts, thereby simultaneously achieving high mass activity and high durability in proton exchange membrane fuel cells (PEMFCs), is highly challenging. Herein, we provide a new paradigm to address this issue via delaying the place exchange between adsorbed oxygen species and surface Pt atoms, thereby inhibiting Pt dissolution, through introducing rare earth bonded subsurface oxygen atoms. We have succeeded in introducing Gd-O dipoles into Pt3 Ni via a high temperature entropy-driven process, with direct spectral evidence attained from both soft and hard X-ray absorption spectroscopies. The higher rated power of 0.93 W cm-2 and superior current density of 562.2 mA cm-2 at 0.8 V than DOE target for heavy-duty vehicles in H2 -air mode suggest the great potential of Gd-O-Pt3 Ni towards practical application in heavy-duty transportation. Moreover, the mass activity retention (1.04 A mgPt -1 ) after 40 k cycles accelerated durability tests is even 2.4 times of the initial mass activity goal for DOE 2025 (0.44 A mgPt -1 ), due to the weakened Pt-Oads bond interaction and the delayed place exchange process, via repulsive forces between surface O atoms and those in the sublayer. This work addresses the critical roadblocks to the widespread adoption of PEMFCs.

7.
J Am Chem Soc ; 145(47): 25716-25725, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37966315

RESUMO

Ammonia is of great importance in fertilizer production and chemical synthesis. It can also potentially serve as a carbon-free energy carrier for a future hydrogen economy. Motivated by a worldwide effort to lower carbon emissions, ammonia synthesis by lithium-mediated electrochemical nitrogen reduction (LiNR) has been considered as a promising alternative to the Haber-Bosch process. A significant performance improvement in LiNR has been achieved in recent years by exploration of favorable lithium salt and proton donor for the electrolyte recipe, but the solvent study is still in its infancy. In this work, a systematic investigation on ether-based solvents toward LiNR is conducted. The assessments of solvent candidates are built on their conductivity, parasitic reactions, product distribution, and faradaic efficiency. Notably, dimethoxyethane gives the lowest potential loss among the investigated systems, while tetrahydrofuran achieves an outstanding faradaic efficiency of 58.5 ± 6.1% at an ambient pressure. We found that solvent molecules impact the above characteristics by dictating the solvation configurations of conductive ions and inducing the formation of solid electrolyte interphase with different compositions. This study highlights the importance of solvents in the LiNR process and advances the electrolyte optimization for better performance.

8.
Angew Chem Int Ed Engl ; 62(38): e202309046, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37528676

RESUMO

Passivation of the sulfur cathode by insulating lithium sulfide restricts the reversibility and sulfur utilization of Li-S batteries. 3D nucleation of Li2 S enabled by radical conversion may significantly boost the redox kinetics. Electrolytes with high donor number (DN) solvents allow for tri-sulfur (S3 ⋅- ) radicals as intermediates, however, the catastrophic reactivity of such solvents with Li anodes pose a great challenge for their practical application. Here, we propose the use of quaternary ammonium salts as electrolyte additives, which can preserve the partial high-DN characteristics that trigger the S3 ⋅- radical pathway, and inhibit the growth of Li dendrites. Li-S batteries with tetrapropylammonium bromide (T3Br) electrolyte additive deliver the outstanding cycling stability (700 cycles at 1 C with a low-capacity decay rate of 0.049 % per cycle), and high capacity under a lean electrolyte of 5 µLelectrolyte mgsulfur -1 . This work opens a new avenue for the development of electrolyte additives for Li-S batteries.

9.
Angew Chem Int Ed Engl ; 62(26): e202301721, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37130000

RESUMO

The reaction kinetics of spin-polarized oxygen evolution reaction (OER) can be enhanced by ferromagnetic (FM) catalysts under an external magnetic field. However, applying a magnetic field necessitates additional energy consumption and creates design difficulties for OER. Herein, we demonstrate that a single-domain FM catalyst without external magnetic fields exhibits a similar OER increment to its magnetized multi-domain one. The evidence is given by comparing the pH-dependent increment of OER on multi- and single-domain FM catalysts with or without a magnetic field. The intrinsic activity of a single-domain catalyst is higher than that of a multi-domain counterpart. The latter can be promoted to approach the former by the magnetization effect. Reducing the FM catalyst size into the single-domain region, the spin-polarized OER performance can be achieved without a magnetic field, illustrating an external magnetic field is not a requirement to reap the benefits of magnetic catalysts.


Assuntos
Campos Magnéticos , Oxigênio , Cinética , Oxirredução , Água
10.
Angew Chem Int Ed Engl ; 62(27): e202219188, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-36799125

RESUMO

Metal/nitrogen-doped carbons (M-N-C) are promising candidates as oxygen electrocatalysts due to their low cost, tunable catalytic activity and selectivity, and well-dispersed morphologies. To improve the electrocatalytic performance of such systems, it is critical to gain a detailed understanding of their structure and properties through advanced characterization. In situ X-ray absorption spectroscopy (XAS) serves as a powerful tool to probe both the active sites and structural evolution of catalytic materials under reaction conditions. In this review, we firstly provide an overview of the fundamental concepts of XAS and then comprehensively review the setup and application of in situ XAS, introducing electrochemical XAS cells, experimental methods, as well as primary functions on catalytic applications. The active sites and the structural evolution of M-N-C catalysts caused by the interplay with electric fields, electrolytes and reactants/intermediates during the oxygen evolution reaction and the oxygen reduction reaction are subsequently discussed in detail. Finally, major challenges and future opportunities in this exciting field are highlighted.

11.
Inorg Chem ; 61(9): 4009-4017, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35188386

RESUMO

The exploration and development of coordination nanocages can provide an approach to control chemical reactions beyond the bounds of the flask, which has aroused great interest due to their significant applications in the field of molecular recognition, supramolecular catalysis, and molecular self-assembly. Herein, we take the advantage of a semirigid and nonsymmetric bridging ligand (H5L) with rich metal-chelating sites to construct an unusual and discrete 3d-4f metallacage, [Zn2Er4(H2L)4(NO3)Cl2(H2O)]·NO3·xCH3OH·yH2O (Zn2Er4). The 3d-4f Zn2Er4 cage possesses a quadruple-stranded structure, and all of the ligands wrap around an open spherical cavity within the core. The self-assembly of the unique cage not only ensures the structural stability of the Zn2Er4 cage as a nanoreactor in solution but also makes the bimetallic lanthanide cluster units active sites that are exposed in the medium-sized cavity. It is important to note that the Zn2Er4 cage as a homogeneous catalyst has been successfully applied to catalyze three-component aza-Darzens reactions of formaldehyde, anilines, and α-diazo esters without another additive under mild conditions, displaying better catalytic activity, higher specificity, short reaction time, and low catalyst loadings. A possible mechanism for this three-component aza-Darzens reaction catalyzed by the Zn2Er4 cage has been proposed. These experimental results have demonstrated the great potential of the discrete 3d-4f metallacage as a host nanoreactor for the development of supramolecular or molecular catalysis.

12.
Angew Chem Int Ed Engl ; 61(27): e202203564, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35466517

RESUMO

Developing new strategies to advance the fundamental understanding of electrochemistry is crucial to mitigating multiple contemporary technological challenges. In this regard, magnetoelectrochemistry offers many strategic advantages in controlling and understanding electrochemical reactions that might be tricky to regulate in conventional electrochemical fields. However, the topic is highly interdisciplinary, combining concepts from electrochemistry, hydrodynamics, and magnetism with experimental outcomes that are sometimes unexpected. In this Review, we survey recent advances in using a magnetic field in different electrochemical applications organized by the effect of the generated forces on fundamental electrochemical principles and focus on how the magnetic field leads to the observed results. Finally, we discuss the challenges that remain to be addressed to establish robust applications capable of meeting present needs.

13.
Chem Soc Rev ; 49(7): 2196-2214, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32133479

RESUMO

Electricity-driven water splitting can facilitate the storage of electrical energy in the form of hydrogen gas. As a half-reaction of electricity-driven water splitting, the oxygen evolution reaction (OER) is the major bottleneck due to the sluggish kinetics of this four-electron transfer reaction. Developing low-cost and robust OER catalysts is critical to solving this efficiency problem in water splitting. The catalyst design has to be built based on the fundamental understanding of the OER mechanism and the origin of the reaction overpotential. In this article, we summarize the recent progress in understanding OER mechanisms, which include the conventional adsorbate evolution mechanism (AEM) and lattice-oxygen-mediated mechanism (LOM) from both theoretical and experimental aspects. We start with the discussion on the AEM and its linked scaling relations among various reaction intermediates. The strategies to reduce overpotential based on the AEM and its derived descriptors are then introduced. To further reduce the OER overpotential, it is necessary to break the scaling relation of HOO* and HO* intermediates in conventional AEM to go beyond the activity limitation of the volcano relationship. Strategies such as stabilization of HOO*, proton acceptor functionality, and switching the OER pathway to LOM are discussed. The remaining questions on the OER and related perspectives are also presented at the end.

14.
Angew Chem Int Ed Engl ; 60(26): 14536-14544, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33834580

RESUMO

Spinel zinc cobalt oxide (ZnCo2 O4 ) is not considered as a superior catalyst for the electrochemical oxygen evolution reaction (OER), which is the bottleneck reaction in water-electrolysis. Herein, taking advantage of density functional theory (DFT) calculations, we find that the existence of low-spin (LS) state cobalt cations hinders the OER activity of spinel zinc cobalt oxide, as the t2g 6 eg 0 configuration gives rise to purely localized electronic structure and exhibits poor binding affinity to the key reaction intermediate. Increasing the spin state of cobalt cations in spinel ZnCo2 O4 is found to propagate a spin channel to promote spin-selected charge transport during OER and generate better active sites for intermediates adsorption. The experiments find increasing the calcination temperature a facile approach to engineer high-spin (HS) state cobalt cations in ZnCo2 O4 , while not working for Co3 O4 . The activity of the best spin-state-engineered ZnCo2 O4 outperforms other typical Co-based oxides.

15.
Angew Chem Int Ed Engl ; 60(49): 25884-25890, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34561927

RESUMO

The efficiency of electrolytic hydrogen production is limited by the slow reaction kinetics of oxygen evolution reaction (OER). Surface-reconstructed ferromagnetic (FM) catalysts with a spin-pinning effect at the FM/oxyhydroxide interface could enhance the spin-dependent OER kinetics. However, in real-life applications, electrolyzers are operated at elevated temperature, which may disrupt the spin orientations of FM catalysts and limit their performance. In this study, we prepared surface-reconstructed SmCo5 /CoOx Hy , which possesses polarized spins at the FM/oxyhydroxide interface that lead to excellent OER activity. These interfacial polarized spins could be further aligned through a magnetization process, which further enhanced the OER performance. Moreover, the operation temperature was elevated to mimic the practical operation conditions of water electrolyzers. It was found that the OER activity enhancement of the magnetized SmCo5 /CoOx Hy catalyst could be preserved up to 60 °C.

16.
Angew Chem Int Ed Engl ; 60(13): 7418-7425, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33372346

RESUMO

A rational design for oxygen evolution reaction (OER) catalysts is pivotal to the overall efficiency of water electrolysis. Much work has been devoted to understanding cation leaching and surface reconstruction of very active electrocatalysts, but little on intentionally promoting the surface in a controlled fashion. We now report controllable anodic leaching of Cr in CoCr2 O4 by activating the pristine material at high potential, which enables the transformation of inactive spinel CoCr2 O4 into a highly active catalyst. The depletion of Cr and consumption of lattice oxygen facilitate surface defects and oxygen vacancies, exposing Co species to reconstruct into active Co oxyhydroxides differ from CoOOH. A novel mechanism with the evolution of tetrahedrally coordinated surface cation into octahedral configuration via non-concerted proton-electron transfer is proposed. This work shows the importance of controlled anodic potential in modifying the surface chemistry of electrocatalysts.

17.
J Am Chem Soc ; 142(17): 7765-7775, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32279490

RESUMO

Exploring efficient and low-cost electrocatalysts for hydrogen evolution reaction (HER) in alkaline media is critical for developing anion exchange membrane electrolyzers. The key to a rational catalyst design is understanding the descriptors that govern the alkaline HER activity. Unfortunately, the principles that govern the alkaline HER performance remain unclear and are still under debate. By studying the alkaline HER at a series of NiCu bimetallic surfaces, where the electronic structure is modulated by the ligand effect, we demonstrate that alkaline HER activity can be correlated with either the calculated or the experimental-measured d band center (an indicator of hydrogen binding energy) via a volcano-type relationship. Such correlation indicates the descriptor role of the d band center, and this hypothesis is further supported by the evidence that combining Ni and Cu produces a variety of adsorption sites, which possess near-optimal hydrogen binding energy. Our finding broadens the applicability of d band theory to activity prediction of metal electrocatalysts and may offer an insightful understanding of alkaline HER mechanism.

18.
Chemistry ; 26(18): 3897, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32167201

RESUMO

Sustainability: Electrocatalysis will play a key role in a proposed man-made, sustainable future. An energy infrastructure without using fossil fuels is a blue map. It can be a hydrogen-based energy system, involving the hydrogen production from solar-driven water electrolysis and the hydrogen fuel cell, or it can be a closed carbon cycle using carbon dioxide electrolysis techniques. Zero-carbon emission cannot be achieved without electrocatalysis.

19.
Chem Soc Rev ; 48(9): 2518-2534, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30976760

RESUMO

Great attention has been recently drawn to metal oxide electrocatalysts for electrocatalysis-based energy storage and conversion devices. To find the optimal electrocatalyst, a prerequisite is an activity metric that reasonably evaluates the intrinsic electrocatalytic activity of a particular catalyst. The intrinsic activity is commonly defined as the specific activity which is the current per unit catalyst surface area. Thus, the precise assessment of intrinsic activity highly depends on the reliable measurement of catalyst surface area, which calls for the knowledge of experimental approaches for determining the surface areas of metal oxide electrocatalysts. This tutorial review aims to summarize and analyze the approaches for measuring the surface areas of metal oxide electrocatalysts for evaluating and comparing their intrinsic electrocatalytic activities. We start by comparing the popular metrics for activity estimation and highlighting the importance of surface-area-normalized activity (i.e. specific activity) for intrinsic chemistry analysis. Second, we provide some general guidelines for experimentally measuring the electrochemically active surface area (ECSA). Third, we review the methods for the surface area measurement of metal oxide electrocatalysts. The detailed procedure for each method is explicitly described to provide a step-by-step manual that guides researchers to perform the measurement; the rationales and uncertainties for each method are discussed to help readers justify the reliable assessment of surface area. Next, we give our recommendations on selecting a rational experimental approach for the surface area measurement of a particular metal oxide electrocatalyst. Lastly, we discuss the future challenges of ECSA measurement and present an exemplary novel ECSA technique.

20.
Angew Chem Int Ed Engl ; 59(24): 9418-9422, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32185854

RESUMO

Nitrates are widely used as fertilizer and oxidizing agents. Commercial nitrate production from nitrogen involves high-temperature-high-pressure multi-step processes. Therefore, an alternative nitrate production method under ambient environment is of importance. Herein, an electrochemical nitrogen oxidation reaction (NOR) approach is developed to produce nitrate catalyzed by ZnFex Co2-x O4 spinel oxides. Theoretical and experimental results show Fe aids the formation of the first N-O bond on the *N site, while high oxidation state Co assists in stabilizing the absorbed OH- for the generation of the second and third N-O bonds. Owing to the concerted catalysis, the ZnFe0.4 Co1.6 O4 oxide demonstrates the highest nitrate production rate of 130±12 µmol h-1 gMO -1 at an applied potential of 1.6 V versus the reversible hydrogen electrode (RHE).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA