Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 35(4): 1241-1258, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36648110

RESUMO

In Arabidopsis thaliana, female gametophyte (FG) development is accompanied by the formation and expansion of the large vacuole in the FG; this is essential for FG expansion, nuclear polar localization, and cell fate determination. Arabidopsis VACUOLELESS GAMETOPHYTES (VLG) facilitates vesicular fusion to form large vacuole in the FG, but the regulation of VLG remains largely unknown. Here, we found that gain-of-function mutation of BRASSINOSTEROID INSENSITIVE2 (BIN2) (bin2-1) increases VLG abundance to induce the vacuole formation at stage FG1, and leads to abortion of FG. Loss-of-function mutation of BIN2 and its homologs (bin2-3 bil1 bil2) reduced VLG abundance and mimicked vlg/VLG phenotypes. Knocking down VLG in bin2-1 decreased the ratio of aberrant vacuole formation at stage FG1, whereas FG1-specific overexpression of VLG mimicked the bin2-1 phenotype. VLG partially rescued the bin2-3 bil1 bil2 phenotype, demonstrating that VLG acts downstream of BIN2. Mutation of VLG residues that are phosphorylated by BIN2 altered VLG stability and a phosphorylation mimic of VLG causes similar defects as did bin2-1. Therefore, BIN2 may function by interacting with and phosphorylating VLG in the FG to enhance its stability and abundance, thus facilitating vacuole formation. Our findings provide mechanistic insight into how the BIN2-VLG module regulates the spatiotemporal formation of the large vacuole in FG development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Células Germinativas Vegetais/metabolismo , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Transdução de Sinais/genética , Vacúolos/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(6): e2221637120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36716376

RESUMO

Lipids establish the specialized thylakoid membrane of chloroplast in eukaryotic photosynthetic organisms, while the molecular basis of lipid transfer from other organelles to chloroplast remains further elucidation. Here we revealed the structural basis of Arabidopsis Sec14 homology proteins AtSFH5 and AtSFH7 in transferring phosphatidic acid (PA) from endoplasmic reticulum (ER) to chloroplast, and whose function in regulating the lipid composition of chloroplast and thylakoid development. AtSFH5 and AtSFH7 localize at both ER and chloroplast, whose deficiency resulted in an abnormal chloroplast structure and a decreased thickness of stacked thylakoid membranes. We demonstrated that AtSFH5, but not yeast and human Sec14 proteins, could specifically recognize and transfer PA in vitro. Crystal structures of the AtSFH5-Sec14 domain in complex with L-α-phosphatidic acid (L-α-PA) and 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA) revealed that two PA ligands nestled in the central cavity with different configurations, elucidating the specific binding mode of PA to AtSFH5, different from the reported phosphatidylethanolamine (PE)/phosphatidylcholine (PC)/phosphatidylinositol (PI) binding modes. Quantitative lipidomic analysis of chloroplast lipids showed that PA and monogalactosyldiacylglycerol (MGDG), particularly the C18 fatty acids at sn-2 position in MGDG were significantly decreased, indicating a disrupted ER-to-plastid (chloroplast) lipid transfer, under deficiency of AtSFH5 and AtSFH7. Our studies identified the role and elucidated the structural basis of plant SFH proteins in transferring PA between organelles, and suggested a model for ER-chloroplast interorganelle phospholipid transport from inherent ER to chloroplast derived from endosymbiosis of a cyanobacteriumproviding a mechanism involved in the adaptive evolution of cellular plastids.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Ácidos Fosfatídicos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Ácidos Fosfatídicos/metabolismo , Tilacoides/metabolismo
3.
PLoS Genet ; 18(7): e1010320, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35877676

RESUMO

Embryonic development is a key developmental event in plant sexual reproduction; however, regulatory networks of plant early embryonic development, particularly the effects and functional mechanisms of phospholipid molecules are still unknown due to the limitation of sample collection and analysis. We innovatively applied the microspore-derived in vitro embryogenesis of Brassica napus and revealed the dynamics of phospholipid molecules, especially phosphatidic acid (PA, an important second messenger that plays an important role in plant growth, development, and stress responses), at different embryonic developmental stages by using a lipidomics approach. Further analysis of Arabidopsis mutants deficiency of CDS1 and CDS2 (cytidinediphosphate diacylglycerol synthase, key protein in PA metabolism) revealed the delayed embryonic development from the proembryo stage, indicating the crucial effect of CDS and PA metabolism in early embryonic development. Decreased auxin level and disturbed polar localization of auxin efflux carrier PIN1 implicate that CDS-mediated PA metabolism may regulate early embryogenesis through modulating auxin transport and distribution. These results demonstrate the dynamics and importance of phospholipid molecules during embryo development, and provide informative clues to elucidate the regulatory network of embryogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diglicerídeos , Desenvolvimento Embrionário , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Ácidos Fosfatídicos/metabolismo
4.
PLoS Genet ; 18(3): e1010077, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35245283

RESUMO

Ovule initiation determines the maximum ovule number and has great impact on seed number and yield. However, the regulation of ovule initiation remains largely elusive. We previously reported that most of the ovule primordia initiate asynchronously at floral stage 9 and PINFORMED1 (PIN1) polarization and auxin distribution contributed to this process. Here, we further demonstrate that a small amount of ovule primordia initiate at floral stage 10 when the existing ovules initiated at floral stage 9 start to differentiate. Genetic analysis revealed that the absence of PIN3 function leads to the reduction in pistil size and the lack of late-initiated ovules, suggesting PIN3 promotes the late ovule initiation process and pistil growth. Physiological analysis illustrated that, unlike picloram, exogenous application of NAA can't restore these defective phenotypes, implying that PIN3-mediated polar auxin transport is required for the late ovule initiation and pistil length. qRT-PCR results indicated that the expression of SEEDSTICK (STK) is up-regulated under auxin analogues treatment while is down-regulated in pin3 mutants. Meanwhile, overexpressing STK rescues pin3 phenotypes, suggesting STK participates in PIN3-mediated late ovule initiation possibly by promoting pistil growth. Furthermore, brassinosteroid influences the late ovule initiation through positively regulating PIN3 expression. Collectively, this study demonstrates that PIN3 promotes the late ovule initiation and contributes to the extra ovule number. Our results give important clues for increasing seed number and yield of cruciferous and leguminous crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Domínio MADS/genética , Óvulo Vegetal/genética
5.
New Phytol ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702992

RESUMO

Leaf senescence is a complex process regulated by developmental and environmental factors, and plays a pivotal role in the development and life cycle of higher plants. Casein kinase 1 (CK1) is a highly conserved serine/threonine protein kinase in eukaryotes and functions in various cellular processes including cell proliferation, light signaling and hormone effects of plants. However, the biological function of CK1 in plant senescence remains unclear. Through systemic genetic and biochemical studies, we here characterized the function of Arabidopsis EL1-like (AEL), a CK1, in promoting leaf senescence by stimulating ethylene biosynthesis through phosphorylating transcription factor WRKY22. Seedlings lacking or overexpressing AELs presented delayed or accelerated leaf senescence, respectively. AELs interact with and phosphorylate WRKY22 at Thr57, Thr60 and Ser69 residues to enhance whose transactivation activity. Being consistent, increased or suppressed phosphorylation of WRKY22 resulted in the promoted or delayed leaf senescence. WRKY22 directly binds to promoter region and stimulates the transcription of 1-amino-cyclopropane-1-carboxylate synthase 7 gene to promote ethylene level and hence leaf senescence. Our studies demonstrated the crucial role of AEL-mediated phosphorylation in regulating ethylene biosynthesis and promoting leaf senescence by enhancing WRKY22 transactivation activity, which helps to elucidate the fine-controlled ethylene biosynthesis and regulatory network of leaf senescence.

6.
PLoS Genet ; 17(12): e1009905, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34879072

RESUMO

Phospholipase D (PLD) hydrolyzes membrane phospholipids and is crucial in various physiological processes and transduction of different signals. Secretory phospholipases play important roles in mammals, however, whose functions in plants remain largely unknown. We previously identified a rice secretory PLD (spPLD) that harbors a signal peptide and here we reported the secretion and function of spPLD in rice heading time regulation. Subcellular localization analysis confirmed the signal peptide is indispensable for spPLD secretion into the extracellular spaces, where spPLD hydrolyzes substrates. spPLD overexpression results in delayed heading time which is dependent on its secretory character, while suppression or deficiency of spPLD led to the early heading of rice under both short-day and long-day conditions, which is consistent with that spPLD overexpression/suppression indeed led to the reduced/increased Hd3a/RFT1 (Arabidopsis Flowing Locus T homolog) activities. Interestingly, rice Hd3a and RFT1 bind to phosphatidylcholines (PCs) and a further analysis by lipidomic approach using mass spectrometry revealed the altered phospholipids profiles in shoot apical meristem, particularly the PC species, under altered spPLD expressions. These results indicate the significance of secretory spPLD and help to elucidate the regulatory network of rice heading time.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/crescimento & desenvolvimento , Fosfatidilcolinas/metabolismo , Fosfolipase D/metabolismo , Proteínas de Plantas/metabolismo , Oryza/enzimologia , Fosfolipase D/genética , Fotoperíodo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas
7.
New Phytol ; 240(3): 1149-1161, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37602953

RESUMO

The drought caused by global warming seriously affects the crop growth and agricultural production. Plants have evolved distinct strategies to cope with the drought environment. Under drought stress, energy and resources should be diverted from growth toward stress management. However, the molecular mechanism underlying coordination of growth and drought response remains largely elusive. Here, we discovered that most of the gibberellin (GA) metabolic genes were regulated by water scarcity in rice, leading to the lower GA contents and hence inhibited plant growth. Low GA contents resulted in the accumulation of more GA signaling negative regulator SLENDER RICE 1, which inhibited the degradation of abscisic acid (ABA) receptor PYL10 by competitively binding to the co-activator of anaphase-promoting complex TAD1, resulting in the enhanced ABA response and drought tolerance. These results elucidate the synergistic regulation of crop growth inhibition and promotion of drought tolerance and survival, and provide useful genetic resource in breeding improvement of crop drought resistance.


Assuntos
Secas , Oryza , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Oryza/metabolismo , Regulação da Expressão Gênica de Plantas
8.
Plant Physiol ; 187(2): 917-930, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34608955

RESUMO

Cell cycle is one of the most fundamentally conserved biological processes of plants and mammals. Casein kinase1s (CK1s) are critical for cell proliferation in mammalian cells; however, how CK1s coordinate cell division in plants remains unknown. Through genetic and biochemical studies, here we demonstrated that plant CK1, Arabidopsis (Arabidopsis thaliana) EL1-like (AELs), regulate cell cycle/division by modulating the stability and inhibitory effects of Kip-related protein6 (KRP6) through phosphorylation. Cytological analysis showed that AELs deficiency results in suppressed cell-cycle progression mainly due to the decreased DNA replication rate at S phase and increased period of G2 phase. AELs interact with and phosphorylate KRP6 at serines 75 and 109 to stimulate KRP6's interaction with E3 ligases, thus facilitating the KRP6 degradation through the proteasome. These results demonstrate the crucial roles of CK1s/AELs in regulating cell division through modulating cell-cycle rates and elucidate how CK1s/AELs regulate cell division by destabilizing the stability of cyclin-dependent kinase inhibitor KRP6 through phosphorylation, providing insights into the plant cell-cycle regulation through CK1s-mediated posttranslational modification.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte , Divisão Celular , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Divisão Celular/genética
9.
Plant Physiol ; 186(4): 2003-2020, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-33930167

RESUMO

The quality control system for messenger RNA (mRNA) is fundamental for cellular activities in eukaryotes. To elucidate the molecular mechanism of 3'-phosphoinositide-dependent protein kinase1 (PDK1), a master regulator that is essential throughout eukaryotic growth and development, we employed a forward genetic approach to screen for suppressors of the loss-of-function T-DNA insertion double mutant pdk1.1 pdk1.2 in Arabidopsis thaliana. Notably, the severe growth attenuation of pdk1.1 pdk1.2 was rescued by sop21 (suppressor of pdk1.1 pdk1.2), which harbors a loss-of-function mutation in PELOTA1 (PEL1). PEL1 is a homolog of mammalian PELOTA and yeast (Saccharomyces cerevisiae) DOM34p, which each form a heterodimeric complex with the GTPase HBS1 (HSP70 SUBFAMILY B SUPPRESSOR1, also called SUPERKILLER PROTEIN7, SKI7), a protein that is responsible for ribosomal rescue and thereby assures the quality and fidelity of mRNA molecules during translation. Genetic analysis further revealed that a dysfunctional PEL1-HBS1 complex failed to degrade the T-DNA-disrupted PDK1 transcripts, which were truncated but functional, and thus rescued the growth and developmental defects of pdk1.1 pdk1.2. Our studies demonstrated the functionality of a homologous PELOTA-HBS1 complex and identified its essential regulatory role in plants, providing insights into the mechanism of mRNA quality control.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo
10.
J Exp Bot ; 73(18): 6133-6149, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35662326

RESUMO

Heading date, panicle architecture, and grain size are key traits that affect the yield of rice (Oryza sativa). Here, we identified a new gene, OsGATA6, whose product regulates heading date. Overexpression of OsGATA6 resulted in delayed heading, increased grain number, and decreased grain size. Knockdown lines generated by artificial microRNA (amiRNA) and CRISPR genome-edited lines of OsGATA6 both showed earlier heading, decreased grain number, and increased grain size. These results suggested that OsGATA6 negatively regulates heading date, positively regulates panicle development, and affects grain size. OsGATA6 was found to be constitutively expressed in rice, and strongly expressed in young leaves and panicles. In situ hybridization analyses showed that OsGATA6 was specifically localized in superficial cells of the panicle primordium. Overexpression lines show decreased expression of RFT1 and Hd3a, which promote heading. OsMFT1, which delays heading date and increases grain number, was down-regulated in amiRNA lines. Further analyses showed that OsGATA6 could bind to the promoter of OsMFT1 and induce its expression, thereby regulating heading date and panicle development. Overexpression of OsGATA6 in Arabidopsis resulted in repressed expression of AtFT and late flowering, suggesting that its function is similar. Taken together, we have identified a new GATA regulator that influences rice heading date and grain number, which potentially increases rice yield.


Assuntos
MicroRNAs , Oryza , Oryza/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
11.
BMC Cancer ; 22(1): 45, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996395

RESUMO

BACKGROUND: Adult sporadic Burkitt lymphoma (BL) is a rare but highly aggressive subtype of lymphoma which lacks its own unique prognostic model. Systemic inflammatory biomarkers have been confirmed as prognostic markers in several types of malignancy. Our objective was to explore the predictive value of pretreatment inflammatory biomarkers and establish a novel, clinically applicable prognostic index for adult patients with sporadic BL. METHODS: We surveyed retrospectively 336 adult patients with newly diagnosed sporadic BL at 8 Chinese medical centers and divided into training cohort (n = 229) and validation cohort (n = 107). The pretreatment inflammatory biomarkers were calculated for optimal cut-off value. The association between serum biomarkers and overall survival (OS) was analyzed by Kaplan-Meier curves and Cox proportional models. The risk stratification was defined based on normal LDH level, Ann Arbor stage of I and completely resected abdominal lesion or single extra-abdominal mass < 10 cm. RESULTS AND CONCLUSIONS: Univariate and multivariate analyses revealed that platelets< 254 × 109/L, albumin< 40 g/L, lactate dehydrogenase≥334 U/L independently predicted unfavorable OS. We used these data as the basis for the prognostic index, in which patients were stratified into Group 1 (no or one risk factor), Group 2 (two risk factors), or Group 3 (three risk factors), which were associated with 5-year OS rates of 88.1, 72.4, and 45%, respectively. In the subgroup analysis for high-risk patients, our prognostic model results showed that high-risk patients with no more than one adverse factor presented a 5-year survival rate of 85.9%, but patients with three adverse factors had a 5-year survival rate of 43.0%. Harrell's concordance index (C-index) of the risk group score was 0.768. Therefore, the new prognostic model could be used to develop risk-adapted treatment approaches for adult sporadic BL.


Assuntos
Biomarcadores Tumorais/sangue , Linfoma de Burkitt , Adulto , Idoso , Linfoma de Burkitt/sangue , Linfoma de Burkitt/diagnóstico , Linfoma de Burkitt/epidemiologia , Linfoma de Burkitt/mortalidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Fatores de Risco , Adulto Jovem
12.
Proc Natl Acad Sci U S A ; 116(32): 16121-16126, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31320586

RESUMO

Grain size is a key factor for determining grain yield in crops and is a target trait for both domestication and breeding, yet the mechanisms underlying the regulation of grain size are largely unclear. Here we show that the grain size and yield of rice (Oryza sativa) is positively regulated by ROP GTPase (Rho-like GTPase from plants), a versatile molecular switch modulating plant growth, development, and responses to the environment. Overexpression of rice OsRac1ROP not only increases cell numbers, resulting in a larger spikelet hull, but also accelerates grain filling rate, causing greater grain width and weight. As a result, OsRac1 overexpression improves grain yield in O. sativa by nearly 16%. In contrast, down-regulation or deletion of OsRac1 causes the opposite effects. RNA-seq and cell cycle analyses suggest that OsRac1 promotes cell division. Interestingly, OsRac1 interacts with and regulates the phosphorylation level of OsMAPK6, which is known to regulate cell division and grain size in rice. Thus, our findings suggest OsRac1 modulates rice grain size and yield by influencing cell division. This study provides insights into the molecular mechanisms underlying the control of rice grain size and suggests that OsRac1 could serve as a potential target gene for breeding high-yield crops.


Assuntos
Divisão Celular , Grão Comestível/citologia , Grão Comestível/enzimologia , GTP Fosfo-Hidrolases/metabolismo , Oryza/citologia , Oryza/enzimologia , Proteínas de Plantas/metabolismo , Contagem de Células , Tamanho do Órgão , Oryza/crescimento & desenvolvimento
13.
J Integr Plant Biol ; 64(3): 702-716, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34837335

RESUMO

Ovule initiation is a key step that strongly influences ovule number and seed yield. Notably, mutants with enhanced brassinosteroid (BR) and cytokinin (CK) signaling produce more ovules and have a higher seed number per silique (SNS) than wild-type plants. Here, we crossed BR- and CK-related mutants to test whether these phytohormones function together in ovule initiation. We determined that simultaneously enhancing BR and CK contents led to higher ovule and seed numbers than enhancing BR or CK separately, and BR and CK enhanced each other. Further, the BR-response transcription factor BZR1 directly interacted with the CK-response transcription factor ARABIDOPSIS RESPONSE REGULATOR1 (ARR1). Treatments with BR or BR plus CK strengthened this interaction and subsequent ARR1 targeting and induction of downstream genes to promote ovule initiation. Enhanced CK signaling partially rescued the reduced SNS phenotype of BR-deficient/insensitive mutants whereas enhanced BR signaling failed to rescue the low SNS of CK-deficient mutants, suggesting that BR regulates ovule initiation and SNS through CK-mediated and -independent pathways. Our study thus reveals that interaction between BR and CK promotes ovule initiation and increases seed number, providing important clues for increasing the seed yield of dicot crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Brassinosteroides/farmacologia , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Sementes/genética , Sementes/metabolismo
14.
Plant Physiol ; 184(2): 933-944, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32788299

RESUMO

Root development is important for normal plant growth and nutrient absorption. Studies have revealed the involvement of various factors in this complex process, improving our understanding of the relevant regulatory mechanisms. Here, we functionally characterize the role of Arabidopsis (Arabidopsis thaliana) phosphatidylinositol 4-kinase γ2 (PI4Kγ2) in root elongation regulation, which functions to modulate stability of the RING-type E3 ligase MYB30-INTERACTING E3 LIGASE1 (MIEL1) and auxin metabolism. Mutant plants deficient in PI4Kγ2 (pi4kγ2) exhibited a shortened root length and elongation zone due to reduced auxin level. PI4Kγ2 was shown to interact with MIEL1, regulating its degradation and furthering the stability of transcription factor MYB30 (which suppresses auxin metabolism by directly binding to promoter regions of GH3 2 and GH3 6). Interestingly, pi4kγ2 plants presented altered hypersensitive response, indicating that PI4Kγ2 regulates synergetic growth and defense of plants through modulating auxin metabolism. These results reveal the importance of protein interaction in regulating ubiquitin-mediated protein degradation in eukaryotic cells, and illustrate a mechanism coordinating plant growth and biotic stress response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Variação Genética , Genótipo , Organogênese Vegetal/genética , Organogênese Vegetal/fisiologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
Plant Cell Environ ; 44(8): 2441-2454, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33866581

RESUMO

Plant architecture plays a major role in canopy photosynthesis and biomass production, and plants adjust their growth (and thus architecture) in response to changing environments. Leaf angle is one of the most important traits in rice (Oryza sativa L.) plant architecture, because leaf angle strongly affects leaf direction and rice production, with more-erect leaves being advantageous for high-density plantings. The degree of leaf bending depends on the morphology of the lamina joint, which connects the leaf and the sheath. In this review, we discuss cell morphology in different lamina joint tissues and describe the underlying genetic network that governs this morphology and thus regulates leaf direction. Furthermore, we focus on the mechanism by how environmental factors influence rice leaf angle. Our review provides a theoretical framework for the future genetic improvement of rice leaf orientation and plant architecture.


Assuntos
Oryza/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Folhas de Planta/fisiologia , Meio Ambiente , Oryza/anatomia & histologia , Oryza/citologia , Células Vegetais , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
PLoS Genet ; 14(11): e1007829, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30496185

RESUMO

Leaf angle is an important agronomic trait and influences crop architecture and yield. Studies have demonstrated the roles of phytohormones, particularly auxin and brassinosteroids, and various factors in controlling leaf inclination. However, the underlying mechanism especially the upstream regulatory networks still need being clarified. Here we report the functional characterization of rice leaf inclination3 (LC3), a SPOC domain-containing transcription suppressor, in regulating leaf inclination through interacting with LIP1 (LC3-interacting protein 1), a HIT zinc finger domain-containing protein. LC3 deficiency results in increased leaf inclination and enhanced expressions of OsIAA12 and OsGH3.2. Being consistent, transgenic plants with OsIAA12 overexpression or deficiency of OsARF17 which interacts with OsIAA12 do present enlarged leaf inclination. LIP1 directly binds to promoter regions of OsIAA12 and OsGH3.2, and interacts with LC3 to synergistically suppress auxin signaling. Our study demonstrate the distinct effects of IAA12-ARF17 interactions in leaf inclination regulation, and provide informative clues to elucidate the functional mechanism of SPOC domain-containing transcription suppressor and fine-controlled network of lamina joint development by LC3-regulated auxin homeostasis and auxin signaling through.


Assuntos
Ácidos Indolacéticos/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas , Modelos Biológicos , Oryza/genética , Folhas de Planta/anatomia & histologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais
17.
Plant Biotechnol J ; 18(5): 1141-1152, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31622529

RESUMO

Cortical microtubule (MT) arrays play a critical role in plant cell shape determination by defining the direction of cell expansion. As plants continuously adapt to ever-changing environmental conditions, multiple environmental and developmental inputs need to be translated into changes of the MT cytoskeleton. Here, we identify and functionally characterize an auxin-inducible and MT-localized protein OsIQ67-DOMAIN14 (OsIQD14), which is highly expressed in rice seed hull cells. We show that while deficiency of OsIQD14 results in short and wide seeds and increases overall yield, overexpression leads to narrow and long seeds, caused by changed MT alignment. We further show that OsIQD14-mediated MT reordering is regulated by specifically affecting MT dynamics, and ectopic expression of OsIQD14 in Arabidopsis could change the cell shape both in pavement cells and in hypocotyl cells. Additionally, OsIQD14 activity is tightly controlled by calmodulin proteins, providing an alternative way to modify the OsIQD14 activity. Our results indicate that OsIQD14 acts as a key factor in regulating MT rearrangements in rice hull cells and hence the grain shape, and allows effective local cell shape manipulation to improve the rice yield trait.


Assuntos
Proteínas de Arabidopsis , Oryza , Citoesqueleto , Proteínas Associadas aos Microtúbulos , Microtúbulos , Oryza/genética
18.
Plant Biotechnol J ; 18(1): 83-95, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31131526

RESUMO

Pyrophosphate-fructose 6-phosphate 1-phosphotransferase (PFP1) reversibly converts fructose 6-phosphate and pyrophosphate to fructose 1, 6-bisphosphate and orthophosphate during glycolysis, and has diverse functions in plants. However, mechanisms underlying the regulation of starch metabolism by PFP1 remain elusive. This study addressed the function of PFP1 in rice floury endosperm and defective grain filling. Compared with the wild type, pfp1-3 exhibited remarkably low grain weight and starch content, significantly increased protein and lipid content, and altered starch physicochemical properties and changes in embryo development. Map-based cloning revealed that pfp1-3 is a novel allele and encodes the regulatory ß-subunit of PFP1 (PFP1ß). Measurement of nicotinamide adenine dinucleotide (NAD+) showed that mutation of PFP1ß markedly decreased its enzyme activity. PFP1ß and three of four putative catalytic α-subunits of PFP1, PFP1α1, PFP1α2, and PFP1α4, interacted with each other to form a heterotetramer. Additionally, PFP1ß, PFP1α1 and PFP1α2 also formed homodimers. Furthermore, transcriptome analysis revealed that mutation of PFP1ß significantly altered expression of many essential enzymes in starch biosynthesis pathways. Concentrations of multiple lipid and glycolytic intermediates and trehalose metabolites were elevated in pfp1-3 endosperm, indicating that PFP1 modulates endosperm metabolism, potentially through reversible adjustments to metabolic fluxes. Taken together, these findings provide new insights into seed endosperm development and starch biosynthesis and will help in the breeding of rice cultivars with higher grain yield and quality.


Assuntos
Oryza/enzimologia , Fosfotransferases/fisiologia , Proteínas de Plantas/fisiologia , Sementes/crescimento & desenvolvimento , Amido/biossíntese , Endosperma , Regulação da Expressão Gênica de Plantas
19.
New Phytol ; 226(1): 142-155, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31745997

RESUMO

Root hair development is crucial for phosphate absorption, but how phosphorus deficiency affects root hair initiation and elongation remains unclear. We demonstrated the roles of auxin efflux carrier PIN-FORMED2 (PIN2) and phospholipase D (PLD)-derived phosphatidic acid (PA), a key signaling molecule, in promoting root hair development in Arabidopsis thaliana under a low phosphate (LP) condition. Root hair elongation under LP conditions was greatly suppressed in pin2 mutant or under treatment with a PLDζ2-specific inhibitor, revealing that PIN2 and polar auxin transport and PLDζ2-PA are crucial in LP responses. PIN2 was accumulated and degraded in the vacuole under a normal phosphate (NP) condition, whereas its vacuolar accumulation was suppressed under the LP or NP plus PA conditions. Vacuolar accumulation of PIN2 was increased in pldζ2 mutants under LP conditions. Increased or decreased PIN2 vacuolar accumulation is not observed in sorting nexin1 (snx1) mutant, indicating that vacuolar accumulation of PIN2 is mediated by SNX1 and the relevant trafficking process. PA binds to SNX1 and promotes its accumulation at the plasma membrane, especially under LP conditions, and hence promotes root hair development by suppressing the vacuolar degradation of PIN2. We uncovered a link between PLD-derived PA and SNX1-dependent vacuolar degradation of PIN2 in regulating root hair development under phosphorus deficiency.


Assuntos
Proteínas de Arabidopsis , Fosfolipase D , Proteínas de Arabidopsis/genética , Ácidos Indolacéticos , Ácidos Fosfatídicos , Fosfolipase D/genética , Fósforo , Raízes de Plantas/fisiologia , Vacúolos
20.
New Phytol ; 225(4): 1606-1617, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31569267

RESUMO

Two types of tonoplast proton pumps, H+ -pyrophosphatase (V-PPase) and the H+ -ATPase (V-ATPase), establish the proton gradient that powers molecular traffic across the tonoplast thereby facilitating turgor regulation and nutrient homeostasis. However, how proton pumps regulate development remains unclear. In this study, we investigated the function of two types of proton pumps in Arabidopsis embryo development and pattern formation. While disruption of either V-PPase or V-ATPase had no obvious effect on plant embryo development, knocking out both resulted in severe defects in embryo pattern formation from the early stage. While the first division in wild-type zygote was asymmetrical, a nearly symmetrical division occurred in the mutant, followed by abnormal pattern formation at all stages of embryo development. The embryonic defects were accompanied by dramatic differences in vacuole morphology and distribution, as well as disturbed localisation of PIN1. The development of mutant cotyledons and root, and the auxin response of mutant seedlings supported the hypothesis that mutants lacking tonoplast proton pumps were defective in auxin transport and distribution. Taking together, we proposed that two tonoplast proton pumps are required for vacuole morphology and PIN1 localisation, thereby controlling vacuole and auxin-related developmental processes in Arabidopsis embryos and seedlings.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Desenvolvimento Embrionário/fisiologia , Pirofosfatase Inorgânica/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/fisiologia , Gravitropismo/fisiologia , Pirofosfatase Inorgânica/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Naftóis/farmacologia , Ftalimidas/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA