Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 149(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35546066

RESUMO

Mammalian early embryo cells have complex DNA repair mechanisms to maintain genomic integrity, and homologous recombination (HR) plays the main role in response to double-strand DNA breaks (DSBs) in these cells. Polo-like kinase 1 (PLK1) participates in the HR process and its overexpression has been shown to occur in a variety of human cancers. Nevertheless, the regulatory mechanism of PLK1 remains poorly understood, especially during the S and G2 phase. Here, we show that protein phosphatase 4 catalytic subunit (PPP4C) deletion causes severe female subfertility due to accumulation of DNA damage in oocytes and early embryos. PPP4C dephosphorylated PLK1 at the S137 site, negatively regulating its activity in the DSB response in early embryonic cells. Depletion of PPP4C induced sustained activity of PLK1 when cells exhibited DNA lesions that inhibited CHK2 and upregulated the activation of CDK1, resulting in inefficient loading of the essential HR factor RAD51. On the other hand, when inhibiting PLK1 in the S phase, DNA end resection was restricted. These results demonstrate that PPP4C orchestrates the switch between high-PLK1 and low-PLK1 periods, which couple the checkpoint to HR.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo de DNA por Recombinação , Animais , Proteínas de Ciclo Celular , Linhagem Celular , DNA/genética , Reparo do DNA por Junção de Extremidades , Reparo do DNA/genética , Desenvolvimento Embrionário/genética , Feminino , Recombinação Homóloga , Mamíferos/genética , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Quinase 1 Polo-Like
2.
Proc Natl Acad Sci U S A ; 119(39): e2210908119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122239

RESUMO

Chlamydia protein associating with death domains (CADD) is involved in the biosynthesis of para-aminobenzoate (pABA), an essential component of the folate cofactor that is required for the survival and proliferation of the human pathogen Chlamydia trachomatis. The pathway used by Chlamydiae for pABA synthesis differs from the canonical multi-enzyme pathway used by most bacteria that relies on chorismate as a metabolic precursor. Rather, recent work showed pABA formation by CADD derives from l-tyrosine. As a member of the emerging superfamily of heme oxygenase-like diiron oxidases (HDOs), CADD was proposed to use a diiron cofactor for catalysis. However, we report maximal pABA formation by CADD occurs upon the addition of both iron and manganese, which implicates a heterobimetallic Fe:Mn cluster is the catalytically active form. Isotopic labeling experiments and proteomics studies show that CADD generates pABA from a protein-derived tyrosine (Tyr27), a residue that is ∼14 Šfrom the dimetal site. We propose that this self-sacrificial reaction occurs through O2 activation by a probable Fe:Mn cluster through a radical relay mechanism that connects to the "substrate" Tyr, followed by amination and direct oxygen insertion. These results provide the molecular basis for pABA formation in C. trachomatis, which will inform the design of novel therapeutics.


Assuntos
Proteínas de Bactérias , Chlamydia trachomatis , Oxigenases , Tirosina , para-Aminobenzoatos , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/enzimologia , Ácido Fólico , Ferro/metabolismo , Manganês/metabolismo , Oxigênio/metabolismo , Oxigenases/metabolismo , Tirosina/metabolismo , para-Aminobenzoatos/metabolismo
3.
J Cell Mol Med ; 28(8): e18303, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613362

RESUMO

Curcuma longa, best known for its culinary application as the main constituent of curry powder, has shown potential impact on the reproductive system. This study aimed to investigate the efficacy of Curcuma longa extract (CLE) on Kidney-Yang deficiency mice induced by hydrocortisone and the possible roles in testosterone secretion in Leydig cells. We evaluated male sexual behaviour, reproductive organ weight, testosterone levels, and histological tissue changes in hydrocortisone-induced mice. CLE effectively reversed hydrocortisone-induced Kidney-Yang deficiency syndrome by improving sexual behaviour, testis and epididymis weight, testosterone levels and reducing pathological damage. Our in vitro study further indicated that CLE stimulated testosterone production via upregulating the mRNA and protein expression of steroidogenic enzymes in Leydig cells. It significantly improved H89-inhibited protein expression of StAR and cAMP-response element-binding (CREB), as well as melatonin-suppressed StAR protein expression. The data obtained from this study suggest that CLE could alleviate Kidney-Yang deficiency symptoms and stimulate testosterone production by upregulating the steroidogenic pathway. This research identifies CLE as a potential nutraceutical option for addressing testosterone deficiency diseases.


Assuntos
Glomerulonefrite , Extratos Vegetais , Testosterona , Masculino , Animais , Camundongos , Células Intersticiais do Testículo , Curcuma , Hidrocortisona , Deficiência da Energia Yang
4.
BMC Pulm Med ; 24(1): 187, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637771

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) has had a global social and economic impact. An easy assessment procedure to handily identify the mortality risk of inpatients is urgently needed in clinical practice. Therefore, the aim of this study was to develop a simple nomogram model to categorize patients who might have a poor short-term outcome. METHODS: A retrospective cohort study of 189 COVID-19 patients was performed at Shanghai Ren Ji Hospital from December 12, 2022 to February 28, 2023. Chest radiography and biomarkers, including KL-6 were assessed. Risk factors of 28-day mortality were selected by a Cox regression model. A nomogram was developed based on selected variables by SMOTE strategy. The predictive performance of the derived nomogram was evaluated by calibration curve. RESULTS: In total, 173 patients were enrolled in this study. The 28-day mortality event occurred in 41 inpatients (23.7%). Serum KL-6 and radiological severity grade (RSG) were selected as the final risk factors. A nomogram model was developed based on KL-6 and RSG. The calibration curve suggested that the nomogram model might have potential clinical value. The AUCs for serum KL-6, RSG, and the combined score in the development group and validation group were 0.885 (95% CI: 0.804-0.952), 0.818 (95% CI: 0.711-0.899), 0.868 (95% CI: 0.776-0.942) and 0.932 (95% CI: 0.862-0.997), respectively. CONCLUSIONS: Our results suggested that the nomogram based on KL-6 and RSG might be a potential method for evaluating 28-day mortality in COVID-19 patients. A high combined score might indicate a poor outcome in COVID-19 patients with pneumonia.


Assuntos
COVID-19 , Humanos , Estudos Retrospectivos , SARS-CoV-2 , China/epidemiologia , Radiografia
5.
Inorg Chem ; 62(28): 11121-11133, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37390479

RESUMO

The complexes [FeIII(HMC)(C2DMA)2]CF3SO3 ([2]OTf) and [FeIII(HMTI)(C2Y)2]CF3SO3 ([3a-c]OTf) have been prepared and thoroughly characterized (HMC = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane; HMTI = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene; Y = Fc (ferrocenyl, [3a]OTf), 4-(N,N-dimethyl)anilino (DMA, [3b]OTf), or 4-(N,N-bis(4-methoxyphenyl)anilino (TPA, [3c]OTf); OTf- = CF3SO3-)). Vibrational and electronic absorption spectroelectrochemical analyses following one-electron oxidation of the ethynyl substituent Y revealed evidence of strong coupling in the resultant mixed valent species for all HMTI-based complexes. However, the analogous mixed valent ion based on [2]OTf appeared to be more localized. Thus, the tetra-imino macrocycle HMTI has enabled significant valence delocalization along the -C2-FeIII-C2- bridge. Electron paramagnetic resonance and Mössbauer spectroscopic studies of [3b]OTf reveal that the π-acidity of HMTI lowers the energy of the FeIII dπ orbitals compared to the purely σ-donating HMC. This observation provides a basis for the interpretation of the macrocycle-dependent valence (de)localization.

6.
Inorg Chem ; 62(41): 16842-16853, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37788376

RESUMO

The salt [K(18-crown-6)]2[Ru(CN)2(CO)3] ([K(18-crown-6)]2[1]) was generated by the reaction of Ru(C2H4)(CO)4 with [K(18-crown-6)]CN. An initial thermal reaction gives [Ru(CN)(CO)4]-, which, upon ultraviolet (UV) irradiation, reacts with a second equiv of CN-. Protonation of [1]2- gave [HRu(CN)2(CO)3]- ([H1]-), which was isolated as a single isomer with mutually trans cyanide ligands. The complex cis,cis,cis-[Ru(pdt)(CN)2(CO)2]2- ([2]2-) was prepared by the UV-induced reaction of [1]2- with propanedithiol (pdtH2). The corresponding iron complex cis,cis,cis-[Fe(pdt)(CN)2(CO)2]2- ([3]2-) was prepared similarly. The pdt complexes [2]2- and [3]2- were treated with Fe(benzylideneacetone)(CO)3 to give, respectively, [RuFe (µ-pdt)(CN)2(CO)4]2- ([5]2-) and [Fe2(µ-pdt)(CN)2(CO)4]2- ([4]2-). The pathway from [3]2- to Fe2 complex [4]2- implicates intermetallic migration of CN-. In contrast, the formation of [5]2- leaves the Ru(CN)2(CO) center intact, as confirmed by X-ray crystallography. The structure of [5]2- features a "rotated" square-pyramidal Fe(CO)2(µ-CO) site. NMR measurements indicate that the octahedral Ru site is stereochemically rigid, whereas the Fe site dynamically undergoes turnstile rotation. 57Fe Mössbauer spectral parameters are very similar for rotated [5]2- and unrotated Fe2 complex [4]2-, indicating the insensitivity of that technique to both the geometry and the oxidation state of the Fe site. According to cyclic voltammetry, [5]2- oxidizes at E1/2 ∼ -0.8 V vs Fc+/0. Electron paramagnetic resonance (EPR) measurements show that 1e- oxidation of [5]2- gives an S = 1/2 rhombic species, consistent with the formulation Ru(II)Fe(I), related to the Hox state of the [FeFe] hydrogenases. Density functional theory (DFT) studies reproduce the structure, 1H NMR shifts, and infrared (IR) spectra observed for [5]2-. Related homometallic complexes with both cyanides on a single metal are predicted to not adopt rotated structures. These data suggest that [5]2- is best described as Ru(II)Fe(0). This conclusion raises the possibility that for some reduced states of the [FeFe]-hydrogenases, the [2Fe]H site may be better described as Fe(II)Fe(0) than Fe(I)Fe(I).

7.
J Am Chem Soc ; 144(18): 8257-8266, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35482829

RESUMO

Utilization of mononuclear iron- and 2-oxoglutarate-dependent (Fe/2OG) enzymes to enable C-H bond functionalization is a widely used strategy to diversify the structural complexity of natural products. Besides those well-studied reactions including hydroxylation, epoxidation, and halogenation, in the biosynthetic pathway of dehydrofosmidomycin, an Fe/2OG enzyme is reported to catalyze desaturation, alkyl chain elongation, along with demethylation in which trimethyl-2-aminoethylphosphonate is converted into methyldehydrofosmidomycin. How this transformation takes place is largely unknown. Herein, we characterized the reactive species, revealed the structure of the reaction intermediate, and used mechanistic probes to investigate the reaction pathway and mechanism. These results led to the elucidation of a two-step process in which the first reaction employs a long-lived Fe(IV)-oxo species to trigger C═C bond installation. During the second reaction, the olefin installed in situ enables C-C bond formation that is accompanied with a C-N bond cleavage and hydroxylation to furnish the alkyl chain elongation and demethylation. This work expands the reaction repertoire of Fe/2OG enzymes by introducing a new pathway to the known C-C bond formation mechanisms utilized by metalloenzymes.


Assuntos
Ferro , Ácidos Cetoglutáricos , Alcenos/química , Catálise , Hidroxilação , Ferro/química , Ácidos Cetoglutáricos/metabolismo
8.
Reprod Biol Endocrinol ; 20(1): 90, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710416

RESUMO

BACKGROUND: Nonobstructive azoospermia (NOA) is one of the most difficult forms of male infertility to treat, and its pathogenesis is still unclear. miRNAs can regulate autophagy by affecting their target gene expression. Our previous study found that miR-188-3p expression in NOA patients was low. There are potential binding sites between the autophagy gene ATG7 and miR-188-3p. This study aimed to verify the binding site between miR-188-3p and ATG7 and whether miR-188-3p affects autophagy and participates in NOA by regulating ATG7 to influence the autophagy marker genes LC3 and Beclin-1. METHODS: Testicular tissue from 16 NOA patients and 16 patients with normal spermatogenesis and 5 cases in each group of pathological sections were collected. High-throughput sequencing was performed to detect mRNA expression differences. Quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, immunohistochemical staining and immunofluorescence were used to detect protein localization and expression. Autophagosome changes were detected by electron microscopy. The targeting relationship between miR-188-3p and ATG7 was confirmed by a luciferase assay. RESULTS: ATG7 protein was localized in the cytoplasm of spermatogenic cells at all levels, and the ATG7 gene (p = 0.019) and protein (p = 0.000) were more highly expressed in the NOA group. ATG7 expression after overexpression/inhibition of miR-188-3p was significantly lower (p = 0.029)/higher (p = 0.021) than in the control group. After overexpression of miR-188-3p, the ATG7 3'UTR-WT luciferase activity was impeded (p = 0.004), while the ATG7 3'UTR-MUT luciferase activity showed no significant difference (p = 0.46). LC3 (p = 0.023) and Beclin-1 (p = 0.041) expression in the NOA group was significantly higher. LC3 and Beclin-1 gene expression after miR-188-3p overexpression/inhibition was significantly lower (p = 0.010 and 0.024, respectively) and higher (p = 0.024 and 0.049, respectively). LC3 punctate aggregation in the cytoplasm decreased after overexpression of miR-188-3p, while the LC3 punctate aggregation in the miR-188-3p inhibitor group was higher. The number of autophagosomes in the miR-188-3p mimic group was lower than the number of autophagosomes in the mimic NC group. CONCLUSIONS: LC3 and Beclin-1 were more highly expressed in NOA testes and negatively correlated with the expression of miR-188-3p, suggesting that miR-188-3p may be involved in the process of autophagy in NOA. miR-188-3p may regulate its target gene ATG7 to participate in autophagy anDual luciferase experiment d affect the development of NOA.


Assuntos
Azoospermia , MicroRNAs , Regiões 3' não Traduzidas , Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Azoospermia/genética , Proteína Beclina-1/genética , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo
9.
Langmuir ; 38(3): 1158-1169, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35021013

RESUMO

Adsorptive purification of organic dyes in wastewater is significant to protect the water environment. Herein, MIL-53(Al) was successfully fabricated through a facile and versatile solvothermal strategy. The stability of MIL-53(Al) under high temperature, acid, base, and peroxide conditions was investigated. The porous MIL-53(Al) had high chemical stability, and the thermal stability reached up to 500 °C, which provided a good foundation for dye removal. MIL-53(Al) showed excellent adsorption performance. The maximum adsorption capacity of MIL-53(Al) for rhodamine B (RhB) can reach 1547 mg g-1 under 303 K, and the corresponding removal efficiency exceeded 90% at the equilibrium time (120 min). The Langmuir model and pseudo-second-order model can well fit RhB adsorption on MIL-53(Al). Thermodynamic study and activation energy values over the range of 298-323 K revealed that the adsorption of RhB was a spontaneous and endothermic physical process in nature. The batch experimental results, X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared (FTIR) spectroscopy analyses suggested that the hydrogen bonding and electrostatic interactions between the hydroxyl/carboxyl groups of MIL-53(Al) and RhB were the primary adsorption mechanisms. Besides, MIL-53(Al) had a higher selectivity to RhB than the coexisting ions in aqueous solution and a superior adsorption performance after five cycles.

10.
Phys Chem Chem Phys ; 24(45): 27900-27907, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36367285

RESUMO

The catalytic reduction of aromatic nitro compounds by metallic nanoparticles in the presence of sodium borohydride (NaBH4) has been widely studied as model reactions. However, the reaction mechanisms still need further investigations. For example, the origin of the induction time that has often been observed is still controversial. Here, we demonstrated that such catalytic reduction reactions on the surface of colloidal gold nanoparticles (AuNPs) may be inspected by the second-harmonic generation (SHG) and two-photon luminescence (TPL) emission from AuNPs. It was revealed that the SHG and TPL signals from AuNPs were sensitive to the substitution of citrate by active hydride species derived from the hydrolysis of NaBH4. Based on the UV-vis spectroscopy analyses and monitoring the SHG/TPL signals, the induction time in the catalytic reaction of 4-nitrothiophenol was revealed to originate from the hindered adsorption of hydride on the gold surface. This work demonstrated that SHG and TPL can provide a new approach for detecting active hydrides on the surface of metallic nanoparticles in colloids.


Assuntos
Nanopartículas Metálicas , Microscopia de Geração do Segundo Harmônico , Ouro , Luminescência , Nanopartículas Metálicas/química , Catálise
11.
Acta Pharmacol Sin ; 43(1): 64-75, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33742107

RESUMO

Coronavirus disease 2019 (COVID-19) broke out in December 2019. Due its high morbility and mortality, it is necessary to summarize the clinical characteristics of COVID-19 patients to provide more theoretical basis for future treatment. In the current study, we conducted a retrospective analysis of the clinical characteristics of COVID-19 patients and explored the risk factors for the severity of illness. A total of 101 COVID-19 patients hospitalized in Leishenshan Hospital (Wuhan, China) was classified into three sub-types: moderate (n = 47), severe (n = 36), and critical (n = 18); their clinical data were collected from the Electronic Medical Record. We showed that among the 101 COVID-19 patients, the median age was 62 years (IQR 51-74); 50 (49.5%) patients were accompanied by hypertension, while 25 (24.8%) and 22 (21.8%) patients suffered from diabetes and heart diseases, respectively, with complications. All patients were from Wuhan who had a definite history of exposure to the epidemic area. Multivariate logistic regression analysis revealed that older age, diabetes, chronic liver disease, percentage of neutrophils (N%) > 75%, CRP > 4 mg/L, D-dimer > 0.55 mg/L, IL-2R > 710 U/mL, IL-8 > 62 pg/mL, and IL-10 > 9.1 pg/mL were independent variables associated with severe COVID-19. In conclusion, we have identified the independent risk factors for the severity of COVID-19 pneumonia, including older age, diabetes, chronic liver disease, higher levels of N%, CRP, D-dimer, IL-2R, IL-8, and IL-10, providing evidence for more accurate risk prediction.


Assuntos
COVID-19/patologia , Idoso , COVID-19/metabolismo , China , Feminino , Hospitalização , Humanos , Interleucina-10/metabolismo , Masculino , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Neutrófilos/patologia , Estudos Retrospectivos , Fatores de Risco , Índice de Gravidade de Doença
12.
Clin Exp Pharmacol Physiol ; 49(1): 25-34, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34438468

RESUMO

Atrial fibrillation (AF) is associated with atrial conduction disturbances caused by electrical and/or structural remodelling. In the present study, we hypothesized that connexin might interact with the calcium channel through forming a protein complex and, then, participates in the pathogenesis of AF. Western blot and whole-cell patch clamp showed that protein levels of Cav1.2 and connexin 43 (Cx43) and basal ICa,L were decreased in AF subjects compared to sinus rhythm (SR) controls. In cultured atrium-derived myocytes (HL-1 cells), knocking-down of Cx43 or incubation with 30 mmol/L glycyrrhetinic acid significantly inhibited protein levels of Cav1.2 and Cav3.1 and the current density of ICa,L and ICa,T . Incubation with nifedipine or mibefradil decreased the protein level of Cx43 in HL-1 cells. Moreover, Cx43 was colocalized with Cav1.2 and Cav3.1 in atrial myocytes. Therefore, Cx43 might regulate the ICa,L and ICa,T through colocalization with calcium channel subunits in atrial myocytes, representing a potential pathogenic mechanism in AF.


Assuntos
Remodelamento Atrial , Canais de Cálcio/fisiologia , Conexina 43/fisiologia , Átrios do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Fibrilação Atrial/metabolismo , Remodelamento Atrial/fisiologia , Western Blotting , Canais de Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/fisiologia , Linhagem Celular , Células Cultivadas , Conexina 43/metabolismo , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/fisiopatologia , Humanos , Mibefradil/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Nifedipino/farmacologia , Técnicas de Patch-Clamp
13.
J Integr Plant Biol ; 64(1): 56-72, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34817930

RESUMO

During the terminal stage of stomatal development, the R2R3-MYB transcription factors FOUR LIPS (FLP/MYB124) and MYB88 limit guard mother cell division by repressing the transcript levels of multiple cell-cycle genes. In Arabidopsis thaliana possessing the weak allele flp-1, an extra guard mother cell division results in two stomata having direct contact. Here, we identified an ethylmethane sulfonate-mutagenized mutant, flp-1 xs01c, which exhibited more severe defects than flp-1 alone, producing giant tumor-like cell clusters. XS01C, encoding F-BOX STRESS-INDUCED 4 (FBS4), is preferentially expressed in epidermal stomatal precursor cells. Overexpressing FBS4 rescued the defective stomatal phenotypes of flp-1 xs01c and flp-1 mutants. The deletion or substitution of a conserved residue (Proline166) within the F-box domain of FBS4 abolished or reduced, respectively, its interaction with Arabidopsis Skp1-Like1 (ASK1), the core subunit of the Skp1/Cullin/F-box E3 ubiquitin ligase complex. Furthermore, the FBS4 protein physically interacted with CYCA2;3 and induced its degradation through the ubiquitin-26S proteasome pathway. Thus, in addition to the known transcriptional pathway, the terminal symmetric division in stomatal development is ensured at the post-translational level, such as through the ubiquitination of target proteins recognized by the stomatal lineage F-box protein FBS4.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Regulação da Expressão Gênica de Plantas/genética , Fenótipo , Estômatos de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Zhongguo Zhong Yao Za Zhi ; 47(13): 3409-3424, 2022 Jul.
Artigo em Zh | MEDLINE | ID: mdl-35850791

RESUMO

The Chinese medicinal herb Mahuang is herbaceous stem of Ephedra sinica, E. intermedia, or E. equisetina(Family, Ephedraceae). In China, Mahuang has been used, all the way over a millennium, as a key component herb of many herbal medicines for management of epidemics of acute respiratory illness and is also used in officially recommended herbal medicines for COVID-19. Mahuang is the first-line medicinal herb for cold and wheezing and also an effective diuretic herb for edema. However, Mahuang can also exert significant adverse effects. The key to safety and effectiveness is rational and precise use of the herb. In this review article, we comprehensively summarize chemical composition of Mahuang and associated differences in pharmacognosy, pharmacodynamics and pharmacokinetics of Mahuang compounds, along with the adverse effects of Mahuang compounds and products. Based on full understanding of how Mahuang is used in Chinese traditional medicine, systematic research on Mahuang in line with contemporary standards of pharmaceutical sciences will facilitate promoting Chinese herbal medicines to become more efficient in management of epidemic illnesses, such as COVID-19. To this end, we recommend research on Mahuang of two aspects, i.e., pharmacological investigation for its multicompound-involved therapeutic effects and toxicological investigation for clinical manifestation of the adverse effects, chemicals responsible for the adverse effects, and conditions for safe use of the herb and the herb-containing medicines.


Assuntos
Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas , Ephedra sinica , Ephedra , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Ephedra sinica/química , Efedrina/química , Humanos , Plantas
15.
J Am Chem Soc ; 143(50): 21416-21424, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34898198

RESUMO

BesC catalyzes the iron- and O2-dependent cleavage of 4-chloro-l-lysine to form 4-chloro-l-allylglycine, formaldehyde, and ammonia. This process is a critical step for a biosynthetic pathway that generates a terminal alkyne amino acid which can be leveraged as a useful bio-orthogonal handle for protein labeling. As a member of an emerging family of diiron enzymes that are typified by their heme oxygenase-like fold and a very similar set of coordinating ligands, recently termed HDOs, BesC performs an unusual type of carbon-carbon cleavage reaction that is a significant departure from reactions catalyzed by canonical dinuclear-iron enzymes. Here, we show that BesC activates O2 in a substrate-gated manner to generate a diferric-peroxo intermediate. Examination of the reactivity of the peroxo intermediate with a series of lysine derivatives demonstrates that BesC initiates this unique reaction trajectory via cleavage of the C4-H bond; this process represents the rate-limiting step in a single turnover reaction. The observed reactivity of BesC represents the first example of a dinuclear-iron enzyme that utilizes a diferric-peroxo intermediate to capably cleave a C-H bond as part of its native function, thus circumventing the formation of a high-valent intermediate more commonly associated with substrate monooxygenations.


Assuntos
Carbono/metabolismo , Compostos Férricos/química , Oxirredutases/metabolismo , Oxigênio/química , Carbono/química , Espectroscopia de Mossbauer , Streptomyces/enzimologia , Especificidade por Substrato
16.
Neurochem Res ; 46(4): 778-791, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33411226

RESUMO

In this study, LRCF, a long noncoding RNA (lncRNA) related to cognitive function, which was first discovered and named by our group, was shown to be involved in the propofol-induced proliferation and apoptosis of oligodendrocytes (OLGs). Our systematic study showed that LRCF expression differs in OLGs of mice of different ages. We found that neonatal mice with a high level of LRCF typically showed greater propofol-induced injury of OLGs. Mechanistic research has shown that LRCF can block the HIF-1α/miR138-5p/Caspase-3 pathway by binding to miR138-5p to form a microRNA (miRNA) sponge and result in cell damage through HIF-1α/Caspase-3 pathway in propofol induced OLGs. This may be the intrinsic reason why neonatal animals with high levels of LRCF tend to develop learning disability and neuro-degeneration more frequently than adults' after exposure to general anesthesia. When LRCF is highly expressed, HIF-1α directly regulates the transcription of the Caspase-3 gene by binding to the transcription factor binding site (TFBS) in its promoter, which induces OLGs apoptosis. LRCF is crucial for the mutual activation of the HIF-1α/miR138-5p/Caspase-3 OLGs survival pathway and the HIF-1α/Caspase-3 OLGs damage pathway. This study is the first to report that up-regulation of HIF-1α in OLGs treated with Propofol can promote apoptosis through HIF-1α/caspase-3 pathway and resist apoptosis through HIF-1α/miR-138-5p/caspase-3 pathway. The effect of HIF-1α on Caspase-3 expression depends on LRCF expression, which provides important theoretical support for gene therapy targeting LRCF. The further significance of this study is points to an involvement of the genetic background with high LRCF expression may serve as an important marker for identifying patients with a high risk of OLGs injury by Propofol. Thus, caution should be taken when administrating propofol in these patients, especially pediatric patients with high level of LRCF.


Assuntos
Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Propofol/toxicidade , RNA Longo não Codificante/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Regulação para Cima
17.
Langmuir ; 37(7): 2514-2522, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33538170

RESUMO

Nanobubbles (NBs) in liquid exhibit many intriguing properties such as low buoyancy and high mass transfer efficiency and reactivity as compared to large bulk bubbles. However, it remains elusive why or how bulk NBs are stabilized in water, and particularly, the states of internal pressures of NBs are difficult to measure due to the lack of proper methodologies or instruments. This study employed the injection of high-pressure gases through a hydrophobized ceramic membrane to produce different gaseous NBs (e.g., N2, O2, H2, and CO2) in water, which is different from cavitation bubbles with potential internal low pressure and noncondensed gases. The results indicate that increasing the injection gas pressure (60-80 psi) and solution temperatures (6-40 °C) both reduced bubble sizes from approximately 400 to 200 nm, which are validated by two independent models developed from the Young-Laplace equation and contact mechanics. Particularly, the colloidal force model can explain the effects of surface tension and surface charge repulsion on bubble sizes and internal pressures. The contact mechanics model incorporates the measurement of the tip-bubble interaction forces by atomic force microscopy to determine the internal pressures and the hardness of NBs (e.g., Young's modulus). Both the colloidal force balance model and our contact mechanics model yielded consistent predictions of the internal pressures of various NBs (120-240 psi). The developed methods and model framework will be useful to unravel properties of NBs and support engineering applications of NBs (e.g., aeration or ozonation). Finally, the bulk NBs under sealed storage could be stable for around a week and progressively reduce in concentrations over the next 30-60 days.

18.
Inorg Chem ; 60(6): 4058-4067, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33645218

RESUMO

Iron(V)-oxo complexes bearing negatively charged tetraamido macrocyclic ligands (TAMLs) have provided excellent opportunities to investigate the chemical properties and the mechanisms of oxidation reactions of mononuclear nonheme iron(V)-oxo intermediates. Herein, we report the differences in chemical properties and reactivities of two iron(V)-oxo TAML complexes differing by modification on the "Head" part of the TAML framework; one has a phenyl group at the "Head" part (1), whereas the other has four methyl groups replacing the phenyl ring (2). The reactivities of 1 and 2 in both C-H bond activation reactions, such as hydrogen atom transfer (HAT) of 1,4-cyclohexadiene, and oxygen atom transfer (OAT) reactions, such as the oxidation of thioanisole and its derivatives, were compared experimentally. Under identical reaction conditions, 1 showed much greater reactivity than 2, such as a 102-fold decrease in HAT and a 105-fold decrease in OAT by replacing the phenyl group (i.e., 1) with four methyl groups (i.e., 2). Then, density functional theory calculations were performed to rationalize the reactivity differences between 1 and 2. Computations reproduced the experimental findings well and revealed that the replacement of the phenyl group in 1 with four methyl groups in 2 not only increased the steric hindrance but also enlarged the energy gap between the electron-donating orbital and the electron-accepting orbital. These two factors, steric hindrance and the orbital energy gap, resulted in differences in the reduction potentials of 1 and 2 and their reactivities in oxidation reactions.

19.
Phys Chem Chem Phys ; 23(35): 19752-19759, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524302

RESUMO

The redox of silver on the surface of Ag nanoparticles (AgNPs) has received extensive attention because of its significant impact on the biological, physical and chemical properties of AgNPs and their applications. Here we demonstrate that the surface redox reaction of AgNPs in colloids may be investigated by the second harmonic generation (SHG) and two-photon luminescence (TPL) emission from the AgNPs. It was revealed that the oxidation of silver on the surface of AgNPs was accelerated upon femtosecond laser excitation, accompanied by a decrease in the SHG and TPL emissions from the AgNPs. The photon-induced reduction of oxidized silver on AgNPs and the formation of surface defects were also revealed by the changes in the SHG and TPL emissions. Size and morphology changes have not been detected by dynamic light scattering and TEM measurements. The changes in the UV-vis extinction spectra were also very weak compared with previous reports. However, the occurrence of redox reactions on the Ag surface upon femtosecond laser irradiation has been confirmed by multiple control experiments. This work demonstrates that SHG and TPL can sensitively probe the subtle structural change on the surface of AgNPs.

20.
Acta Pharmacol Sin ; 42(12): 2155-2172, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33931765

RESUMO

LianhuaQingwen capsule, prepared from an herbal combination, is officially recommended as treatment for COVID-19 in China. Of the serial pharmacokinetic investigations we designed to facilitate identifying LianhuaQingwen compounds that are likely to be therapeutically important, the current investigation focused on the component Glycyrrhiza uralensis roots (Gancao). Besides its function in COVID-19 treatment, Gancao is able to induce pseudoaldosteronism by inhibiting renal 11ß-HSD2. Systemic and colon-luminal exposure to Gancao compounds were characterized in volunteers receiving LianhuaQingwen and by in vitro metabolism studies. Access of Gancao compounds to 11ß-HSD2 was characterized using human/rat, in vitro transport, and plasma protein binding studies, while 11ß-HSD2 inhibition was assessed using human kidney microsomes. LianhuaQingwen contained a total of 41 Gancao constituents (0.01-8.56 µmol/day). Although glycyrrhizin (1), licorice saponin G2 (2), and liquiritin/liquiritin apioside (21/22) were the major Gancao constituents in LianhuaQingwen, their poor intestinal absorption and access to colonic microbiota resulted in significant levels of their respective deglycosylated metabolites glycyrrhetic acid (8), 24-hydroxyglycyrrhetic acid (M2D; a new Gancao metabolite), and liquiritigenin (27) in human plasma and feces after dosing. These circulating metabolites were glucuronized/sulfated in the liver and then excreted into bile. Hepatic oxidation of 8 also yielded M2D. Circulating 8 and M2D, having good membrane permeability, could access (via passive tubular reabsorption) and inhibit renal 11ß-HSD2. Collectively, 1 and 2 were metabolically activated to the pseudoaldosterogenic compounds 8 and M2D. This investigation, together with such investigations of other components, has implications for precisely defining therapeutic benefit of LianhuaQingwen and conditions for its safe use.


Assuntos
Antivirais/farmacocinética , Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas/farmacocinética , Compostos Fitoquímicos/farmacocinética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Administração Oral , Animais , Antivirais/administração & dosagem , Antivirais/efeitos adversos , Disponibilidade Biológica , Biotransformação , Cápsulas , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/efeitos adversos , Feminino , Glycyrrhiza/efeitos adversos , Células HEK293 , Humanos , Síndrome de Liddle/induzido quimicamente , Síndrome de Liddle/enzimologia , Masculino , Segurança do Paciente , Compostos Fitoquímicos/administração & dosagem , Compostos Fitoquímicos/efeitos adversos , Ratos Sprague-Dawley , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA