Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 49(11): 3110-3113, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824340

RESUMO

Autofocus is crucial for capturing sharp images with imaging devices for information acquisition. Traditional autofocus strategies based on post-processing become less efficient for passive FSPI microscopy of yet low temporal resolution. In this Letter, a fast and image-free autofocus system is proposed for passive FSPI microscopy. Based on the complementary design of an optical path, the system can measure the focus degree at 5000 fps while maintaining a high light efficiency for imaging. The proposed system can be easily combined with existing trinocular microscopes, which provides a welcomed boost to the practicability of passive FSPI microscopy.

2.
PLoS One ; 14(7): e0219369, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31299053

RESUMO

BACKGROUND: Detection of pulmonary nodules is an important aspect of an automatic detection system. Incomputer-aided diagnosis (CAD) systems, the ability to detect pulmonary nodules is highly important, which plays an important role in the diagnosis and early treatment of lung cancer. Currently, the detection of pulmonary nodules depends mainly on doctor experience, which varies. This paper aims to address the challenge of pulmonary nodule detection more effectively. METHODS: A method for detecting pulmonary nodules based on an improved neural network is presented in this paper. Nodules are clusters of tissue with a diameter of 3 mm to 30 mm in the pulmonary parenchyma. Because pulmonary nodules are similar to other lung structures and have a low density, false positive nodules often occur. Thus, our team proposed an improved convolutional neural network (CNN) framework to detect nodules. First, a nonsharpening mask is used to enhance the nodules in computed tomography (CT) images; then, CT images of 512×512 pixels are segmented into smaller images of 96×96 pixels. Second, in the 96×96 pixel images which contain or exclude pulmonary nodules, the plaques corresponding to positive and negative samples are segmented. Third, CT images segmented into 96×96 pixels are down-sampled to 64×64 and 32×32 size respectively. Fourth, an improved fusion neural network structure is constructed that consists of three three-dimensional convolutional neural networks, designated as CNN-1, CNN-2, and CNN-3, to detect false positive pulmonary nodules. The networks' input sizes are 32×32×32, 64×64×64, and 96×96×96 and include 5, 7, and 9 layers, respectively. Finally, we use the AdaBoost classifier to fuse the results of CNN-1, CNN-2, and CNN-3. We call this new neural network framework the Amalgamated-Convolutional Neural Network (A-CNN) and use it to detect pulmonary nodules. FINDINGS: Our team trained A-CNN using the LUNA16 and Ali Tianchi datasets and evaluated its performance using the LUNA16 dataset. We discarded nodules less than 5mm in diameter. When the average number of false positives per scan was 0.125 and 0.25, the sensitivity of A-CNN reached as high as 81.7% and 85.1%, respectively.


Assuntos
Diagnóstico por Computador/métodos , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Redes Neurais de Computação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Detecção Precoce de Câncer , Reações Falso-Positivas , Humanos , Imageamento Tridimensional , Neoplasias Pulmonares/diagnóstico por imagem , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA