Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Molecules ; 28(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298928

RESUMO

The vulnerabilities of cancer cells constitute a promising strategy for drug therapeutics. This paper integrates proteomics, bioinformatics, and cell genotype together with in vitro cell proliferation assays to identify key biological processes and potential novel kinases that could account, at least in part, for the clinical differences observed in colorectal cancer (CRC) patients. This study started by focusing on CRC cell lines stratified by their microsatellite (MS) state and p53 genotype. It shows that cell-cycle checkpoint, metabolism of proteins and RNA, signal transduction, and WNT signaling processes are significantly more active in MSI-High p53-WT cell lines. Conversely, MSI-High cell lines with a mutant (Mut) p53 gene showed hyperactivation of cell signaling, DNA repair, and immune-system processes. Several kinases were linked to these phenotypes, from which RIOK1 was selected for additional exploration. We also included the KRAS genotype in our analysis. Our results showed that RIOK1's inhibition in CRC MSI-High cell lines was dependent on both the p53 and KRAS genotypes. Explicitly, Nintedanib showed relatively low cytotoxicity in MSI-High with both mutant p53 and KRAS (HCT-15) but no inhibition in p53 and KRAS WT (SW48) MSI-High cells. This trend was flipped in CRC MSI-High bearing opposite p53-KRAS genotypes (e.g., p53-Mut KRAS-WT or p53-WT KRAS-Mut), where observed cytotoxicity was more extensive compared to the p53-KRAS WT-WT or Mut-Mut cells, with HCT 116 (KRAS-Mut and p53-WT) being the most sensitive to RIOK1 inhibition. These results highlight the potential of our in silico computational approach to identify novel kinases in CRC sub-MSI-High populations as well as the importance of clinical genomics in determining drug potency.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais
2.
Front Cardiovasc Med ; 10: 1224743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37608809

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide and Inflammation plays a critical role in the development of CVD. Despite considerable progress in understanding the underlying mechanisms and various treatment options available, significant gaps in therapy necessitate the identification of novel therapeutic targets. Sphingolipids are a family of lipids that have gained attention in recent years as important players in CVDs and the inflammatory processes that underlie their development. As preclinical studies have shown that targeting sphingolipids can modulate inflammation and ameliorate CVDs, targeting sphingolipids has emerged as a promising therapeutic strategy. This review discusses the current understanding of sphingolipids' involvement in inflammation and cardiovascular diseases, the existing therapeutic approaches and gaps in therapy, and explores the potential of sphingolipids-based drugs as a future avenue for CVD treatment.

3.
J Agric Food Chem ; 69(20): 5652-5662, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33974427

RESUMO

Quorum quenching (QQ) is the ability to interfere with bacterial cell to cell communication, known as quorum sensing (QS). QQ enzymes that degrade or modify acyl homoserine lactones (AHLs) have been attracting increasing interest as promising agents for inhibiting QS-mediated bacterial pathogenicity. Plant pathogens from the genus Erwinia cause diseases in several economically important crops. Fire blight is a devastating plant disease caused by Erwinia amylovora, affecting a wide range of host species within the Rosaceae and posing a major global threat for commercial apple and pear production. While QS has been described in Erwinia species, no AHL-degrading enzymes were identified and characterized. Here, phylogenetic analysis and structural modeling were applied to identify an AHL lactonase in E. amylovora (dubbed EaAiiA). Following recombinant expression and purification, the enzyme was biochemically characterized. EaAiiA lactonase activity was dependent on metal ions and effectively degraded AHLs with high catalytic efficiency. Its highest specific activity (kcat/KM value) was observed against one of the AHLs (3-oxo-C6-homoserine lactone) secreted from E. amylovora. Exogenous addition of the purified enzyme to cultures of E. amylovora reduced the formation of levan, a QS-regulated virulence factor, by 40% and the transcription level of the levansucrase-encoding gene by 55%. Furthermore, preincubation of E. amylovora cultures with EaAiiA inhibited the progress of fire blight symptoms in immature Pyrus communis fruits. These results demonstrate the ability of the identified enzyme from E. amylovora to act as a quorum-quenching lactonase.


Assuntos
Erwinia amylovora , Proteínas de Bactérias/genética , Hidrolases de Éster Carboxílico , Erwinia amylovora/genética , Homosserina , Filogenia , Doenças das Plantas , Percepção de Quorum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA