Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37631046

RESUMO

COVID-19 continues to cause an increase in the number of cases and deaths worldwide. Due to the ever-mutating nature of the virus, frequent vaccination against COVID-19 is anticipated. Most of the approved SARS-CoV-2 vaccines are administered using the conventional intramuscular route, causing vaccine hesitancy. Thus, there is a need for an effective, non-invasive vaccination strategy against COVID-19. This study evaluated the synergistic effects of a subunit microparticulate vaccine delivered using microneedles. The microparticles encapsulated a highly immunogenic subunit protein of the SARS-CoV-2 virus, such as the spike protein's receptor binding domain (RBD). Adjuvants were also incorporated to enhance the spike RBD-specific immune response. Our vaccination study reveals that a microneedle-based vaccine delivering these microparticles induced spike RBD-specific IgM, IgG, IgG1, IgG2a, and IgA antibodies. The vaccine also generated high levels of CD4+ and CD8a+ molecules in the secondary lymphoid organs. Overall, dissolving microneedles delivery spike RBD antigen in microparticulate form induced a robust immune response, paving the way for an alternative self-administrable, non-invasive vaccination strategy against COVID-19.

2.
Int J Pharm ; 632: 122583, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36610521

RESUMO

The objective of this "proof-of-concept" study was to evaluate the synergistic effect of a subunit microparticulate vaccine and microneedles (MN) assisted vaccine delivery system against a human coronavirus. Here, we formulated PLGA polymeric microparticles (MPs) encapsulating spike glycoprotein (GP) of SARS-CoV as the model antigen. Similarly, we formulated adjuvant MPs encapsulating Alhydrogel® and AddaVax™. The antigen/adjuvant MPs were characterized and tested in vitro for immunogenicity. We found that the antigen/adjuvant MPs were non-cytotoxic in vitro. The spike GP MPs + Alhydrogel® MPs + AddaVax™ MPs showed enhanced immunogenicity in vitro as confirmed through the release of nitrite, autophagy, and antigen presenting molecules with their co-stimulatory molecules. Next, we tested the in vivo efficacy of the spike GP MP vaccine with and without adjuvant MPs in mice vaccinated using MN. The spike GP MPs + Alhydrogel® MPs + AddaVax™ MPs induced heightened spike GP-specific IgG, IgG1 and IgG2a antibodies in mice. Also, spike GP MPs + Alhydrogel® MPs + AddaVax™ MPs enhanced expression of CD4+ and CD8+ T cells in secondary lymphoid organ like spleen. These results indicated spike GP-specific humoral immunity and cellular immunity in vivo. Thus, we employed the benefits of both the subunit vaccine MPs and dissolving MN to form a non-invasive and effective vaccination strategy against human coronaviruses.


Assuntos
Síndrome Respiratória Aguda Grave , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Animais , Camundongos , Hidróxido de Alumínio , Síndrome Respiratória Aguda Grave/prevenção & controle , Modelos Animais de Doenças , Adjuvantes Imunológicos , Imunidade Celular , Antígenos , Vacinas de Subunidades Antigênicas , Imunidade Humoral , Anticorpos Antivirais
3.
Vaccines (Basel) ; 10(9)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36146568

RESUMO

This 'proof-of-concept' study aimed to test the microparticulate vaccine delivery system and a transdermal vaccine administration strategy using dissolving microneedles (MN). For this purpose, we formulated poly(lactic-co-glycolic) acid (PLGA) microparticles (MP) encapsulating the inactivated canine coronavirus (iCCoV), as a model antigen, along with adjuvant MP encapsulating Alhydrogel® and AddaVax. We characterized the vaccine MP for size, surface charge, morphology, and encapsulation efficiency. Further, we evaluated the in vitro immunogenicity, cytotoxicity, and antigen-presentation of vaccine/adjuvant MP in murine dendritic cells (DCs). Additionally, we tested the in vivo immunogenicity of the MP vaccine in mice through MN administration. We evaluated the serum IgG, IgA, IgG1, and IgG2a responses using an enzyme-linked immunosorbent assay. The results indicate that the particulate form of the vaccine is more immunogenic than the antigen suspension in vitro. We found the vaccine/adjuvant MP to be non-cytotoxic to DCs. The expression of antigen-presenting molecules, MHC I/II, and their costimulatory molecules, CD80/40, increased with the addition of the adjuvants. Moreover, the results suggest that the MP vaccine is cross presented by the DCs. In vivo, the adjuvanted MP vaccine induced increased antibody levels in mice following vaccination and will further be assessed for its cell-mediated responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA