RESUMO
Globally, various estimates are available on the above-ground (plant parts) carbon (C) sequestering potential of agroforestry systems (AFSs). However, information on soil organic carbon (SOC) sequestration potential is limited for AFSs. Furthermore, the impacts of AFSs established for the restoration of C in degraded soils (prone to soil erosion, C and nutrients loss, etc.) of Himalayas are rarely investigated. Thus, a study was conducted on an agroforestry block established in 1989 at the Indian Council of Agricultural Research (ICAR), Research Complex for North Eastern Hill (NEH) Region, Lembucherra, Tripura, India. The AFSs comprised of four multipurpose tree species viz., teak (Tectona grandis Linn), sissoo (Dalbergia sissoo Roxb. Ex DC.), eucalyptus (Eucalyptus globulus L.), and neem (Azadirachta indica A. Juss) in combination with pineapple (Ananas comosus L. merr.). Planted in three times replicated randomized block design. After 28 years of establishment, the impacts of these AFSs were assessed on SOC stocks and its fraction pools. Results revealed that sissoo + pineapple system stored the highest SOC stocks in 0-15 cm (22.1 ± 1.4 Mg/ha) and 30-60 cm (18.0 ± 4.3 Mg/ha) depths, whereas the SOC stocks in 15-30 cm (12.2 ± 1.2 Mg/ha) and 0-30 cm (34.0 ± 1.6 Mg/ha) were the highest under teak + pineapple. When considering the entire 0-100 cm soil profile, the SOC stocks ranged between 65.3 and 71.6 Mg/ha across the diverse AFSs which was significantly higher than that under cultivated land (52.8 ± 2.6 Mg/ha). The sissoo + pineapple system had the highest SOC stock in 0-100 cm (71.6 ± 5.8 Mg/ha). The share of passive carbon (PC, less labile + non-labile) pools to SOC stocks under AFSs followed the order of sissoo + pineapple > teak + pineapple > neem + pineapple > eucalyptus + pineapple. The PC or recalcitrant pools of SOC stocks at 0-100 cm were 54.2-60.6% under various AFSs. Results revealed that the establishment of AFSs with pineapple on degraded lands increased a significant amount of C and had a considerable effect on soil quality in comparison to C present in soils under cropland. Thus, a large scale adoption of AFSs may restore C lost through the cultivation of the crop in degraded lands and provide a feasible option for livelihood through concurrent cultivation of multipurpose tree species and agri-horticulture crops.
Assuntos
Carbono , Solo , Agricultura , Carbono/análise , Sequestro de Carbono , ÍndiaRESUMO
Farmers are not growing diversified crops and applying huge amounts of agrochemicals and imbalanced fertilizers in the rice-wheat cropping system (RWCS), since the 1960s. The objective of this study was to evaluate the microbial and nutrient dynamics in Indian mustard (Brassica juncea L.) under various sowing environments and nutrient sources during Rabi season (October-March), 2015-2016. The experiment was laid out in the split-plot design with three sowing dates in main-plots, and eight nutrient sources in sub-plots. The maximum bacteria, fungi, and actinomycetes population, soil microbial biomass carbon (SMBC), dehydrogenase activities, and available nitrogen, phosphorus, potassium, and sulphur (NPKS) were recorded on November 17 sown crop, and the lowest was observed on December 7 sowing during both the years, and in the pooled analysis. Furthermore, applied nutrient sources, highest bacteria, fungi, and actinomycetes population, available NPKS, SMBC, and dehydrogenase activity were observed in 75% recommended dose of fertilizers (RDF) + 25% N through pressmud (PM) + Azotobacto + phosphorus solubilizing bacteria (PSB) than other nutrient sources. In conclusion, high demand and cost of chemical fertilizers can be replaced by 25% amount easily and locally available organic manures like PM compost to sustain the soil health and crop productivity. It will be helpful to restore the soil biodiversity in the RWCS and provide a roadmap for the researchers, government planners, and policymakers for the use of PM as a source of organic matter and nutrients.
RESUMO
Low soil moisture during dry season, poor soil properties and lack of adequate crop varieties are the major constraints for sustainable intensification of eastern Himalayas in changing climate. Suitable varieties, tillage alteration and integrated nutrient management with emphasis on locally available crop residues/plant biomass may help addressing these issues. The role of minimum tillage (MT) and no-till (NT), and organic matter substitution on conferring of favourable root environment, improvement in morpho-physiology and subsequent productivity of the crops are not objectively studied in Himalayan ecosystems. Thus, a six year field study was conducted for examining the residual effect of tillage and nutrient management (NM) practices applied to summer (rainy) rice (Oryza sativa L) on root growth-attributes and impact on morpho-physiology of succeeding winter pea (Pisums ativum L.) grown uniformly under NT. Higher root surface area, total root length, root volume, root length ratio (RLR) and root tissue densityin pea crop were observed under residual effect of conventional tillage (CT) relative to NT and MT. In addition, significantly higher values of functional root traits viz., root length ratio (RLR), root mass ratio and root finenessin pea were observed under CT and application of 50% NPK and 100% NPK relative to other tillage and NM practices. However, increased root exudation was observed under NT and MTalong with organic residue addition. Noticeable changes in stress responsive morpho-physiological traits like enhanced chlorophyll pigmentation and favourable leaf characteristics were observed in pea crop grown under NT with 50% NPK+weed biomass (WB)/green leaf manure (GLM) applications. Higher leaf area expansion and thickness were recorded with optimum turgidity under NT and MT than that under CT. Comparative increase in green pod and stover yield of pea with enhanced partition efficiency and harvest index were recorded under MT/NT along with 50% NPK+WB/GLM application than that under CT and other NM practices. Thus, adoption of MT/NT along with 50% NPK+WB/GLM in summer rice is recommended for inducing favourable root environment and optimised pea production in succeeding winter season in study region of the Eastern Himalayas, India and other similar agro-ecosystems.
RESUMO
Achieving a circular economic model in agriculture and meeting the food requirement of the growing population is a global challenge. The task is much more daunting in the Eastern Himalaya where low productive maize-fallow is a predominant production system. To enhance system productivity and energy use efficiency while maintaining environmental sustainability and economic profitability, therefore, energy-efficient, low carbon footprint (CF; CO2-e) and profitable short duration crops must be made an integral part of the maize fallow system. Thus, six cropping systems viz., maize-fallow, maize-French bean, maize-soybean, maize-black gram, maize-green gram, and maize-toria were evaluated for seven consecutive years (2011-2018) to assess their energy requirement and efficiency, carbon footprint (CF; CO2-e), economic returns and eco-efficiency. The results revealed that the maize-French bean system had the highest system productivity (11.4 Mg ha-1), energy productivity (17.9), energy profitability (15.9) and non-renewable energy use efficiency (9.97). The maize-French bean system had also the highest net profit (US$ 3764.5 ha-1) and benefit to cost ratio (2.54). The energy consumed under different inputs/activities across the cropping systems for chemical fertilizers, diesel and machinery ranged from 50.0-62.7%, 17.3-20.8% and 4.6-15.4%, respectively. The maize-fallow system had the highest CF (0.34 kg CO2 e per kg grain) while, the maize-French bean system had the lowest CF (0.19 kg CO2 e per kg grain). The maize-French bean system had also considerably increased eco-efficiency both in terms of energy use (US$ 0.23 MJ-1) and (US$ 1.78 per kg CO2 e) over maize-fallow system. Thus, the study has suggested that maize-French bean system is energy-efficient, economically viable and environmentally safer systems to utilize maize fallow and improve food security, may help in achieving green/circular economy.
Assuntos
Zea mays , Agricultura , Produtos Agrícolas , Fertilizantes , SoloRESUMO
Appropriate land configuration and assured nutrient supply are prerequisites for quality organic baby corn (Zea mays L.) production in high rainfall areas of the delicate Eastern Himalayan Region of India. A long term (5-year) study was conducted during 2012-2016 on a sandy loam soil in the mid attitude of Sikkim, Eastern Himalayan Region of India to evaluate the productivity, produce quality, the profitability of baby corn, and soil properties under different land configurations comprising flatbed, ridge and furrow, and broad bed and furrow, and organic nutrient management practices comprising un-amended control, farmyard manure 12 t ha-1, vermicompost 4 t ha-1 and farmyard manure 6 t ha-1 + vermicompost 2 t ha-1. The baby corn sown on broad bed and furrow had the tallest plant (149.25 cm), maximum dry matter (64.33 g plant-1), highest leaf area index (3.5), maximum cob length (8.10 cm), cob girth (6.13 cm) and cob weight (8.14 g) leading to significantly higher fresh baby corn yield (1.89 t ha-1), and net returns (US$ 906.1 ha-1) than those of other treatments. Mineral composition (phosphorus, potassium, iron, and zinc), protein, and ascorbic acid content were also the highest in baby corn grown under the broad bed and furrow system. The soil of broad bed and furrow had a higher pH, organic carbon content, organic carbon pools, microbial biomass carbon, and enzymatic activities (dehydrogenase, fluorescein diacetate, and acid phosphatase) compared to soils of other land configurations. A combined application of farmyard manure (6 t ha-1) + vermicompost (2 t ha-1) improved the crop growth and produced 117.8% higher fresh baby corn and 99.7% higher fodder yield over control (0.9 t fresh corn and 13.02 t fodder yield ha-1), respectively. This treatment also registered significantly higher gross return (US$ 1746.9 ha-1), net return (US$ 935.8 ha-1), and benefit-cost ratio (2.15) than other nutrient management practices. Fresh cob quality in terms of protein (22.91%) and ascorbic acid content (101.6 mg 100 g-1) was observed to be significantly superior under combined application of farmyard manure (6 t ha-1) + vermicompost (2 t ha-1) than those of other nutrient management systems. However, fresh baby corn cobs produced with vermicompost 4 t ha-1 had the highest concentration of phosphorus, potassium, iron, and zinc. Application of farmyard manure 12 t ha-1 registered the maximum increment in soil organic carbon content (1.52%), its pool (40.6 t ha-1) and carbon sequestration rate (0.74 t ha-1 year-1) followed by integrated application of farmyard manure (6 t ha-1) and vermicompost (2 t ha-1). The maximum soil microbial biomass carbon and enzymatic activities [dehydrogenase (22.1 µg TPF g-1 soil h-1) and fluorescein diacetate (67.1 µg FDA g-1 soil h-1)] were noted with the combined use of farmyard manure (6 t ha-1) + vermicompost (2 t ha-1). Thus, the study suggests that the broad bed and furrow land configuration along with the combined application of farmyard manure + vermicompost could be an economically feasible practice for quality organic baby corn production and soil health improvement in the Eastern Himalaya and other similar eco-regions elsewhere.