RESUMO
Livestock blood is a protein-rich waste byproduct produced during meat production processes in slaughterhouses. Its utilization through conversion into value-added products is an intriguing management strategy. In this study, bovine blood was used to obtain the protein hydrolysate for use as a peptone for microbial growth medium. Lyophilized bovine blood was heat treated to make it susceptible to enzymic hydrolysis, and then enzymatically treated with trypsin (bovine pancreas protease) to produce protein hydrolysate. Physico-chemical features were determined for protein hydrolysate and compared to commercial Merck peptone from meat. Amino acid compositions of bovine blood and commercial peptones were subjected to multivariate analysis based on Euclidean similarity matrix using software PAST. Strains of Staphylococcus aureus 25,923, Pseudomonas aeruginosa 27,853, Staphylococcus aureus 6538 P, Enterococcus faecalis 11,700, Escherichia coli 8739, Klebsiella pneumoniae 13,883, Salmonella typhimurium 14,028 and Listeria monocytogenes 13,932 were used as test microbial strains. Growth of bacteria in culture media based on the peptone from bovine protein hydrolysate was compared to that in corresponding reference media based on commercial peptone. The results of these growth tests were comparable. Growth data were depicted and statistically analyzed using R packages ggplot2 and growthcurver, respectively, providing data fitting a standard form of logistic equation.
Assuntos
Peptonas , Hidrolisados de Proteína , Animais , Bovinos , Peptonas/metabolismo , Hidrolisados de Proteína/química , Meios de Cultura/química , Bactérias/metabolismo , Tripsina , Escherichia coli/metabolismoRESUMO
Mobile phones are known as the most widely used electronic instruments, and an enormous number of discarded mobile phones are generated. The present work used a pure culture of Penicillium simplicissimum in a bubble column bioreactor to extract Cu and Ni from mobile phone printed circuit boards (MPPCBs) waste. Molasses was used as an efficient carbon source to enhance bioleaching efficiency and increase the cost benefits. The adaptation phase was done at Erlenmeyer flasks to reach 40 g/L of MPPCBs powder. The most significant parameters, including the mass of MPPCBs powder, aeration, molasses concentration, and their interaction, were optimized in order to leach the maximum possible Cu and Ni using central composite design in response surface methodology (RSM). The model p-values for Cu and Ni recovery were 0.0030 and 0.0348, respectively, emphasizing the model's accuracy. 96.94% of Cu was recovered under 8.8% (v/v) of molasses, aeration rate of 0.29 (l/min), and MPPCBs powder of 10 g/L. The optimized condition of Ni leaching was 1.9% (v/v) of molasses, aeration rate of 0.37 (l/min), and MPPCBs powder of 10 g/L, resulting in 71.51% recovery. The present article demonstrated the great potential of P. simplicissimum to improve metal recovery from e-waste utilizing molasses and bubble column bioreactors.
Assuntos
Resíduo Eletrônico , Reatores Biológicos , Carbono , Resíduo Eletrônico/análise , Metais , MelaçoRESUMO
OBJECTIVE: The objective of this study was to use nano-niosomal formulations to deliver simvastatin as a poor-water soluble drug into breast cancer cells. SIGNIFICANCE: Our study focused on the problem associated with poor water-soluble drugs which have significant biological activity in vivo. METHODS: Different niosomal formulations of simvastatin were prepared and characterized in terms of morphology, size, encapsulation efficiency (EE), and release kinetic. Antiproliferative activity and the mechanism were assessed by quantitative real-time PCR and flow cytometry. Moreover, confocal microscopy was employed to analyze the cell uptake of simvastatin loaded niosomes to the cancerous cells. RESULTS: Size, polydispersity index (PDI), and EE of the best formulation were obtained as 164.8 nm, 0.232, and 97%, respectively. The formulated simvastatin had a spherical shape and showed a slow release profile of the drug after 72 h. Stability data elucidated an increase in mean diameter and PDI which was lower for 4 °C than 25 °C. Confocal microscopy showed the localization of drug loaded niosomes in the cancer cells. The MTT assay revealed both free drug and drug loaded niosomes exhibited a dose-dependent cytotoxicity against breast cancer cells (MDA-MB-231 cells). Flow cytometry and qPCR analysis revealed drug loaded niosomes exert their cytotoxicity on cancerous cells via regulation of apoptotic and anti-apoptotic genes. CONCLUSION: The prepared niosomal simvastatin showed good physicochemical and biological properties than free drug. Our study suggests that niosomal delivery could be considered as a promising strategy for the delivery of poor water-soluble drugs to cancer cells.
Assuntos
Lipossomos/química , Neoplasias , Sinvastatina , Tamanho da Partícula , Sinvastatina/farmacologiaRESUMO
In this study, indigenous cyanogenic bacterial strains were isolated on nutrient, minimal salt, and soil extract media at various culture conditions from two distinct landfills of e-waste, Iran. Based on their cyanide formation profiles, five most potent isolates were selected for optimization and to this end, the influence of the most effective factors on cyanide production including pH, glycine concentration and temperature were assessed using one-factor at a time method (OFAT). Initial pH of 7, glycine concentration of 2 g/L and temperature of 30°C were obtained as optimal conditions for most of the isolates. Additionally, two bioleaching processes were applied for each bacteria to detect the effect of optimal conditions on bioleaching and to assay their potential in the mobilization of copper. Under optimal conditions and pulp density of 1 g/L, copper recoveries were recorded as 96.73%, 82.49%, 81.17%, 41.72%, and 31.52% by S22, N13, N37, N23, and N41 respectively during 10 days which is approximately 1.5-5 times higher than the recovery obtained without optimization. During the optimization and the bioleaching process, the pH fluctuation of the flasks was monitored which validated the activity of the microorganisms.
Assuntos
Cobre , Resíduo Eletrônico , Bactérias , Concentração de Íons de Hidrogênio , Irã (Geográfico) , Instalações de Eliminação de ResíduosRESUMO
There is a substantial volume of mobile phone waste every year. Due to the disadvantages of traditional methods, it is necessary to look for biological processes that are more eco-friendly and economical to recover metals from e-waste. Fungi provide large amounts of organic acids and dissolve metals but using sucrose in the medium is not economical. In this paper, the main objective is to find a suitable alternative carbon substrate instead of sucrose for fungi bioleaching of Ni and Cu in printed circuit boards (PCBs) of mobile phones using Penicillium simplicissimum. Four kinds of carbon sources (including sucrose, cheese whey, sugar, and sugar cane molasses) were selected. Also, pH and number of spores in inoculum were optimized by response surface methodology (RSM) for all carbon sources. The results showed the simultaneous maximum recovery of Cu and Ni is not possible. For Cu recovery, sugar is the best economical and simplistic medium instead of sucrose. Maximum recovery of Cu (90%) gained at the pH of 7, 3.3â¯×â¯107 spores, and in sugar. The amount of Ni recovery (89%) was highest in molasses, at the pH of 2, and 106 spores. The results proved non-conventional carbon sources improve bioleaching efficiency and the possibility of industrialization.
Assuntos
Telefone Celular , Resíduo Eletrônico , Metais , ReciclagemRESUMO
This study aimed to develop a drug carrier based on amine-functionalized mesoporous silica nanoparticles (AAS-MSNPs) for a poorly water-soluble drug, curcumin (CUR), and to study its effects on α-synuclein (α-Syn) fibrillation and cytotoxicity. Here, we show that AAS-MSNPs possess high values of loading efficiency and capacity (33.5% and 0.45 mg drug/mg MSNPs, respectively) for CUR. It is also revealed that α-Syn species interact strongly with the CUR-loaded AAS-MSNPs, leading to a significant inhibition of the fibrillation process. Furthermore, these samples reduce the toxic effects of CUR. However, drug-loaded AAS-MSNPs do not affect the cytotoxic properties of the formed fibrils considerably. In addition, CUR loaded onto AAS-MSNPs shows enhanced stability in comparison with that of the free drug. These remarkable properties introduce AAS-MSNPs as a promising tool for the formulation of poorly water-soluble drugs such as CUR.
Assuntos
Curcumina/química , Portadores de Fármacos , Nanopartículas , Dióxido de Silício , alfa-Sinucleína/antagonistas & inibidores , Aminas , Animais , Células PC12 , RatosRESUMO
This study compares the impact of the calcium-based additives and the pyrolyzer on the recovery and the halide content of the oil produced from the pyrolysis of paper-laminated phenolic resin printed circuit boards (FR2-PCB). The preliminary experiments showed that the maximum liquid recovery (40.6%) was achieved in a fluidized bed pyrolyzer containing a 50:50 mixture of CaO and Ca(OH)2 operating at T = 620 °C and PCB-to-additive ratio (FR2/A) = 5.4 g/g for 22 min. Extra tests were then carried out under these conditions in fixed and fluidized bed pyrolyzers to separately explore the impact of CaO, Ca(OH)2, and CaO + Ca(OH)2 on the liquid recovery (LR) and the halogen content of the non-solid products. In the fluidized bed, LR in the presence of CaO, Ca(OH)2, and CaO + Ca(OH)2 was 34.5%, 41.2%, and 38.9 wt%, respectively. The fraction of phenolic compounds in the pyrolysis oil ranged from 86% to 93%, about 1-3% higher than the corresponding values in the fixed bed. Using additives led to lower halide content in the pyrolysis oil of the fluidized bed than that of the fixed bed. However, the opposite trend was observed in the absence of additives. Regardless of the type of pyrolyzer, Ca(OH)2 was more successful than CaO in increasing LR, whereas CaO was more effective than Ca(OH)2 in pyrolysis oil dechlorination. Co-pyrolysis of FR2-PCB and CaO + Ca(OH)2 in a fluidized bed reactor was identified as a practical approach to enhance the recovery of pyrolysis oil comprising only 5% of the original halogen content of the feedstock.
RESUMO
In recent years, triclosan (TCS) has been widely used as an antibacterial agent in personal care products due to the spread of the Coronavirus. TSC is an emerging contaminant, and due to its stability and toxicity, it cannot be completely degraded through traditional wastewater treatment methods. In this study, a novel strain of Enterobacter cloacae was isolated and identified that can grow in high TCS concentrations. Also, we introduced naphthalene dioxygenase as an effective enzyme in TCS biodegradation, and its role during the removal process was investigated along with the laccase enzyme. The change of cell surface hydrophobicity during TCS removal revealed that a glycolipid biosurfactant called rhamnolipid was involved in TCS removal, leading to enhanced biodegradation of TCS. The independent variables, such as initial TCS concentration, pH, removal duration, and temperature, were optimized using the response surface method (RSM). As a result, the maximum TCS removal (97%) was detected at a pH value of 7 and a temperature of 32 °C after 9 days and 12 h of treatment. Gas chromatography-mass spectrometry (GC/MS) analysis showed five intermediate products and a newly proposed pathway for TCS degradation. Finally, the phytotoxicity experiment conducted on Cucumis sativus and Lens culinaris seeds demonstrated an increase in germination power and growth of stems and roots in comparison to untreated water. These results indicate that the final treated water was less toxic.
Assuntos
Dioxigenases , Triclosan , Poluentes Químicos da Água , Triclosan/análise , Enterobacter cloacae/metabolismo , Complexos Multienzimáticos , Poluentes Químicos da Água/químicaRESUMO
The feasibility of employing the biological activated carbon (BAC) process to debilitate azo dye Carmoisine by Klebsiella spp. was investigated. Plate assay revealed the capability of Klebsiella spp. for removal of Carmoisine via degradation. Kinetic parameters were measured for Carmoisine debilitation by Klebsiella spp. using the suspended anaerobic process. Two types of granular and rod-shaped activated carbon were used to form the biological beds in order to study the Carmoisine debilitation in batch processes. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were used to indicate the colonization and biofilm formation of bacteria grown on activated carbon particles (ACPs). Thin-layer chromatography (TLC), liquid chromatography-mass spectrometry (LC-MS), high-pressure liquid chromatography (HPLC) and biosorption studies demonstrated biotransformation of Carmoisine into its constituent aromatic amines during the Carmoisine debilitation in suspended anaerobic and BAC processes. The porosity of activated carbons, inoculation size and age of biological beds were the important factors affecting the viability of bacterial cells grown on ACPs and, consequently, the rate and efficiency of the Carmoisine debilitation process determined through spectrophotometry. The reusability of biological beds was demonstrated by conducting sequential batch experiments. In conclusion, the BAC process proved to be an efficient method for anaerobic dye degradation.
Assuntos
Compostos Azo , Carvão Vegetal , Compostos Azo/química , Biotransformação , Corantes/metabolismo , Klebsiella/metabolismo , NaftalenossulfonatosRESUMO
This study presented the fabrication of macro and micro-scale microbial fuel cells (MFCs) to generate bioelectricity from oxalate solution and monitor the biodegradation in a micro-scale MFC for the first time. The maximum generated power density of 44.16 W m-3 in the micro-scale MFC elucidated its application as a micro-sized power generator for implantable medical devices (IMDs). It is also worthwhile noting that for the macro-scale MFC, the significant amounts of open circuit voltage, oxalate removal, and coulombic efficiency were about 935 mV, 99%, and 44.2%, respectively. These values compared to previously published studies indicate successful oxalate biodegradation in the macro-scale MFC. Regarding critical challenges to determine the substrate concentration in microfluidic outlets, sample collection in a suitable time and online data reporting, an analogy was made between macro and micro-scale MFCs to elicit correlations defining the output current density as the inlet and the outlet oxalate concentration. Another use of the system as an IMD is to be a platform to identify urolithiasis and hyperoxaluria diseases. As a versatile device for power generation and oxalate biodegradation monitoring, the use of facile and cheap materials (< $1.5 per device) and utilization of human excreta are exceptional features of the manufactured micro-scale MFC.
Assuntos
Fontes de Energia Bioelétrica , Oxalatos/metabolismo , Oxalatos/urina , Biodegradação Ambiental , Humanos , Monitorização Fisiológica , Compostos Orgânicos/metabolismoRESUMO
This study reports the fabrication of a new cathode electrode assembly using polyaniline (PANI) and graphene on a stainless steel mesh (SSM) as an alternative for the conventional expensive cathode of microbial electrolysis cells (MECs). With respect to the previous efforts to propose an efficient and cost-effective alternative for platinum (Pt) catalysts and cathode electrodes, the present study investigates the assessment of different catalysts to elucidate the potential of the modified SSM cathode electrode for larger-scale MECs. In the case of feeding dairy wastewater to the MEC, the maximum hydrogen production rate and COD removal were obtained by SSM/PANI/graphene cathode and had the values 0.805 m3 H2 m-3 anolyte day-1 and 82%, respectively, at the applied potential of 1 V. These values were only 20% and 7% lower than those of the MEC with Pt on the carbon cloth cathode, respectively. The coulombic efficiencies of SSM/Pt and SSM/PANI/graphene were seen to be 64.48% and 56.67%, respectively. It was also concluded that the fabrication cost of the modified cathode was 50% lower than the conventional cathodes with Pt on the carbon cloth. Finally, the evaluation of the modified cathode performance was achieved based on Fourier transform infrared spectroscopy, linear sweep voltammetry, scanning electron microscopy, and atomic force microscopy.
Assuntos
Bactérias/química , Eletrólise/métodos , Hidrogênio/química , Bactérias/metabolismo , Fontes de Energia Bioelétrica/microbiologia , Carbono/química , Catálise , Eletrodos , Eletrólise/instrumentação , Hidrogênio/metabolismo , Platina/química , Águas Residuárias/química , Águas Residuárias/microbiologiaRESUMO
The present study investigates the diversification and dynamic behavior of a multi-population microfluidic microbial fuel cell (MFC) as a biosensor. The cost effective microfluidic MFC coupled to a comprehensive model, presents a novel platform for monitoring chemical and biological phenomena. The importance of competition among different microbial groups, hierarchical biochemical processes, bacterial chemotaxis and different mechanisms of electron transfer were significant considerations in the present model. The validation of the model using experimental data from a microfluidic MFC shows an appropriate match with the hierarchal biodegradation processes of a complex substrate as well as development of bacterial chemotaxis during multi-population biofilm formation under real conditions. Microfluidic MFC performance, including temporal and spatial distribution of different microbial group concentrations in the biofilm and anolyte bulk, the competitive behavior of different species, bacterial transport parameters and bioelectrochemical characteristics are also assessed.
Assuntos
Fontes de Energia Bioelétrica , Biofilmes , Técnicas Eletroquímicas/métodos , Microfluídica , Modelos Biológicos , QuimiotaxiaRESUMO
Laccase production by indigenous fungus, Phanerochaete chrysosporium, requires solving optimal problems to determine the maximum production of the enzyme within a definite time period and conditions specified in the solid-state fermentation process. For this purpose, parallel to response surface methodology, an analytical approach has been proposed based on the advanced concepts of Poisson geometry and Lie groups, which lead to a system of the Hamiltonian equations. Despite the dating of the Hamiltonian approach to solving biological problems, the novelty of this paper is based on the expression of a Hamiltonian system in notions of Poisson geometry, Lie algebras and symmetry groups and first integrals. In this way, all collected data and the variables are taken into account in their actual role in the Hamiltonian system without any limitation on their number and dimensions. Also, the Hamiltonian system obtained can be reduced by symmetry concepts of Lie algebras, which result in the exact solution of the initial optimal problem. In addition, it can be converted to Lagrangian and vice versa. The proposed approach applies to the mathematical models describing the production of biomass and lignocellulolytic enzymes, consumption of the lignocellulosic matrix, fermentation model of the Tequila production process, and the laccase production. Ultimately, a comparison between the approximate method for producing laccase using the response surface methodology and the proposed analytical method has been made.
Assuntos
Lacase/metabolismo , Modelos Biológicos , Phanerochaete/enzimologiaRESUMO
Great advantages bestowed by mesoporous silica nanoparticles (MSNs) including high surface area, tailorable pore diameter and surface chemistry, and large pore volume render them as efficient tools in biomedical applications. Herein, MSNs with different surface chemistries were synthesized and investigated in terms of biocompatibility and their impact on the morphology of bone marrow-derived mesenchymal stem cells both in 2D and 3D culture systems. Bare MSNs (BMSNs) were synthesized by template removing method using tetraethylorthosilicate (TEOS) as a precursor. The as-prepared BMSNs were then used to prepare amine-functionalized (AMSNs), carboxyl-functionalized (CMSNs) and polymeric amine-functionalized (PMSNs) samples, consecutively. These nanoparticles were characterized by scanning electron microscopy, zeta potential measurement, dynamic light scattering, BET (Brunauer, Emmett, Teller) analysis, and FTIR technique. In a 3D culture system, stem cells were encapsulated in alginate hydrogel in which MSNs of different functionalities were incorporated. The results showed good biocompatibility for both BMSNs and AMSNs in 2D and 3D culture systems. For these samples, the viability of about 80% was acquired after 2 weeks of 3D culture. When compared to the control, CMSNs caused higher cell proliferation in the 2D culture; while they showed cytotoxic effects in the 3D culture system. Interestingly, polymeric amine-functionalized silica nanoparticles (PMSNs) resulted in disrupted morphology and very low viability in the 2D cell culture and even less viability in 3D environment in comparison to BMSNs and AMSNs. This significant decrease in cell viability was attributed to the higher uptake values of highly positively charged PMSNs by cells as compared to other MSNs. This up-regulated uptake was evaluated by using an inductively coupled plasma optical emission spectroscopy instrument (ICP-OES). These results uncover different interactions between cell and nanoparticles with various surface chemistries. Building on these results, new windows are opened for employing biocompatible nanoparticles such as BMSNs and AMSNs, even at high concentrations, as potential cargos for carrying required growth and/or differentiation factors for tissue engineering applications.
Assuntos
Materiais Biocompatíveis/síntese química , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanopartículas/química , Dióxido de Silício/química , Alginatos/química , Materiais Biocompatíveis/farmacologia , Técnicas de Cultura de Células , Encapsulamento de Células/métodos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Hidrogéis , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Nanopartículas/ultraestrutura , Porosidade , Silanos/química , Dióxido de Silício/farmacologia , Eletricidade Estática , Relação Estrutura-Atividade , Propriedades de Superfície , Engenharia Tecidual/métodosRESUMO
Bacterial transport parameters play a fundamental role in microbial population dynamics, biofilm formation and bacteria dispersion. In this study, the novel model was extended based on the capability of microsized microbial fuel cells (MFCs) as amperometric biosensors to predict the cells' chemotactic and bioelectrochemical properties. The model prediction results coincide with the experimental data of Shewanella oneidensis and chemotaxis mutant of P. aeruginosa bdlA and pilT strains, indicating the complementary role of numerical predictions for bioscreening applications of microsized MFCs. Considering the general mechanisms for electron transfer, substrate biodegradation, microbial growth and bacterial dispersion are the main features of the presented model. In addition, the genetic algorithm method was implemented by minimizing the objective function to estimate chemotaxis properties of the different strains. Microsized MFC performance was assessed by analyzing the microbial activity in the biofilm and the anolyte.
Assuntos
Fontes de Energia Bioelétrica/microbiologia , Biofilmes/crescimento & desenvolvimento , Quimiotaxia , Pseudomonas aeruginosa/fisiologia , Shewanella/fisiologia , Algoritmos , Técnicas Biossensoriais , Simulação por Computador , Modelos BiológicosRESUMO
This study develops a photosynthetic microalgae microbial fuel cell (PMMFC) engaged Chlorella vulgaris microalgae to investigate effect of light intensities and illumination regimes on simultaneous production of bioelectricity, biomass and wastewater treatment. The performance of the system under different light intensity (3500, 5000, 7000 and 10,000â¯lx) and light/dark regimes (24/00, 12/12, 16/8â¯h) was investigated. The optimum light intensity and light/dark regimes for achieving maximum yield of PMMFC were obtained. The maximum power density of 126â¯mWâ¯m-3, the coulombic efficiency of 78% and COD removal of 5.47% were achieved. The maximum biomass concentration of 4â¯gâ¯l-1 (or biomass yield of 0.44â¯gâ¯l-1â¯day-1) was obtained in continuous light intensity of 10,000â¯lx. The comparison of the PMMFC performance with air-cathode and abiotic-cathode MFCs shows that the maximum power density of air-cathode MFC was only 13% higher than PMMFC.
Assuntos
Fontes de Energia Bioelétrica , Microalgas , Chlorella vulgaris , Eletrodos , FotossínteseRESUMO
Despite the promise of hydrogel-based stem cell therapies in orthopedics, a significant need still exists for the development of injectable microenvironments capable of utilizing the regenerative potential of donor cells. Indeed, the quest for biomaterials that can direct stem cells into bone without the need of external factors has been the "Holy Grail" in orthopedic stem cell therapy for decades. To address this challenge, we have utilized a combinatorial approach to screen over 63 nanoengineered hydrogels made from alginate, hyaluronic acid, and two-dimensional nanoclays. Out of these combinations, we have identified a biomaterial that can promote osteogenesis in the absence of well-established differentiation factors such as bone morphogenetic protein 2 (BMP2) or dexamethasone. Notably, in our "hit" formulations we observed a 36-fold increase in alkaline phosphate (ALP) activity and a 11-fold increase in the formation of mineralized matrix, compared to the control hydrogel. This induced osteogenesis was further supported by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy. Additionally, the Montmorillonite-reinforced hydrogels exhibited high osteointegration as evident from the relatively stronger adhesion to the bone explants as compared to the control. Overall, our results demonstrate the capability of combinatorial and nanoengineered biomaterials to induce bone regeneration through osteoinduction of stem cells in a natural and differentiation-factor-free environment.
Assuntos
Alginatos/química , Calcificação Fisiológica , Hidrogéis/química , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Engenharia Tecidual/métodos , Proteína Morfogenética Óssea 2/metabolismo , Humanos , OrtopediaRESUMO
The present study assessed the potential for biochemical conversion of energy stored in agricultural waste and residue in Iran. The current status of agricultural residue as a source of bioenergy globally and in Iran was investigated. The total number of publications in this field from 2000 to 2014 was about 4294. Iran ranked 21st with approximately 54 published studies. A total of 87 projects have been devised globally to produce second-generation biofuel through biochemical pathways. There are currently no second-generation biorefineries in Iran and agricultural residue has no significant application. The present study determined the amount and types of sustainable agricultural residue and oil-rich crops and their provincial distribution. Wheat, barley, rice, corn, potatoes, alfalfa, sugarcane, sugar beets, apples, grapes, dates, cotton, soybeans, rapeseed, sesame seeds, olives, sunflowers, safflowers, almonds, walnuts and hazelnuts have the greatest potential as agronomic and horticultural crops to produce bioenergy in Iran. A total of 11.33million tonnes (Mt) of agricultural biomass could be collected for production of bioethanol (3.84gigaliters (Gl)), biobutanol (1.07Gl), biogas (3.15billion cubic meters (BCM)), and biohydrogen (0.90BCM). Additionally, about 0.35Gl of biodiesel could be obtained using only 35% of total Iranian oilseed. The potential production capacity of conventional biofuel blends in Iran, environmental and socio-economic impacts including well-to-wheel greenhouse gas (GHG) emissions, and the social cost of carbon dioxide reduction are discussed. The cost of emissions could decrease up to 55.83% by utilizing E85 instead of gasoline. The possible application of gaseous biofuel in Iran to produce valuable chemicals and provide required energy for crop cultivation is also studied. The energy recovered from biogas produced by wheat residue could provide energy input for 115.62 and 393.12 thousand hectares of irrigated and rain-fed wheat cultivation in Iran, respectively. The nitrogen requirement for 33.6% of the total wheat cultivation area could be supplied by the ammonia acquired from biohydrogen. A discussion of the logistics of collection and transportation of the biomass and sensitivity analysis are carried out to evaluate the effect of field cover factor, crop yield, and well-to-wheel GHG emission on collectable residue, biofuel production, and GHG emissions.
Assuntos
Biocombustíveis , Produtos Agrícolas , Óleos de Plantas , Eliminação de Resíduos/métodos , Agricultura , Irã (Geográfico)RESUMO
This study reports the fabrication of a microfluidic microbial fuel cell (MFC) using nickel as a novel alternative for conventional electrodes and a non-phatogenic strain of Escherichia coli as the biocatalyst. The feasibility of a microfluidic MFC as an efficient power generator for production of bioelectricity from glucose and urea as organic substrates in human blood and urine for implantable medical devices (IMDs) was investigated. A maximum open circuit potential of 459 mV was achieved for the batch-fed microfluidic MFC. During continuous mode operation, a maximum power density of 104 Wm(-3) was obtained with nutrient broth. For the glucose-fed microfluidic MFC, the maximum power density of 5.2 µW cm(-2) obtained in this study is significantly greater than the power densities reported previously for microsized MFCs and glucose fuel cells. The maximum power density of 14 Wm(-3) obtained using urea indicates the successful performance of a microfluidic MFC using human excreta. It features high power density, self-regeneration, waste management and a low production cost (<$1), which suggest it as a promising alternative to conventional power supplies for IMDs. The performance of the microfluidic MFC as a power supply was characterized based on polarization behavior and cell potential in different substrates, operational modes, and concentrations.
Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais/métodos , Microfluídica/métodos , Eletrodos , Glucose/química , Humanos , Níquel/químicaRESUMO
In this study, a new model of microbial fuel cell (MFC) was obtained for the first time. The modeled MFC was made using a combination of two approaches; the conduction-based method and two-step anaerobic digestion. Performance of the MFC was based on calculations for current evolution and polarization curves with different subsequent variables of the biofilm and anolyte. The model was able to make predictions for performance of the MFC for a simple substrate to more complex ones. The model was successfully validated with a variety of substrates (acetate, glucose and dairy wastewater) and the results were compared with previously published measurements. The model polarization results showed that is able to predict overshoot as a dynamic phenomenon. The ratio of acetoclastic methanogens to electrogens in the biofilm increased from an average value of 0.63×10(-2) to 1.17×10(-2) by increasing external resistance from 50 Ω to 100Ω . The attached to planktonic cells ratio was computed 0.45 for the glucose-fed MFC and for the dairy wastewater-fed MFC at 50 Ω was 8.86 and at 100 Ω was 5.46.