Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 380(2217): 20200321, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-34974721

RESUMO

Structure formation during solidification of a Pd-Ni-Cu-P melt is studied. It is demonstrated that changes in the heat transfer conditions lead to a nonlinear change in the characteristics of the structure. The article presents the regimes of cooling the samples and the results of their structure and composition studies. It is found that a decrease in the cooling rate of the alloy leads to an increase in the size, proportion and composition of nanoinclusions in an amorphous matrix. X-ray diffraction method, electron probe microanalysis, transmission microscopy and scanning calorimetry are used for samples characterization. This article is part of the theme issue 'Transport phenomena in complex systems (part 2)'.

2.
Nanotechnology ; 24(15): 155601, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23518601

RESUMO

A procedure for the synthesis of monodisperse spherical mesoporous silica particles (MSMSPs) via the controlled coagulation of silica/surfactant clusters into spherical aggregates with mean diameters of 250-1500 nm has been developed. The synthesis is fast (taking less than 1 h) because identical clusters are simultaneously formed in the reaction mixture. The results of microscopic, x-ray diffraction, adsorption and optical measurements allowed us to conclude that the clusters are ∼15 nm in size and have hexagonally packed cylindrical pore channels. The channel diameters in MSMSPs obtained with cethyltrimethylammonium bromide and decyltrimethylammonium bromide as structure-directing agents were 3.1 ± 0.15 and 2.3 ± 0.12 nm, respectively. The specific surface area and the pore volume of MSMSP were, depending on synthesis conditions, 480-1095 m(2) g(-1) and 0.50-0.65 cm(3) g(-1). The MSMSP were used to grow opal-like photonic-crystal films possessing a hierarchical macro-mesoporous structure, with pores within and between the particles. A selective filling of mesopore channels with glycerol, based on the difference between the capillary pressures in macro- and mesopores, was demonstrated. It is shown that this approach makes it possible to control the photonic bandgap position in mesoporous opal films by varying the degree of mesopore filling with glycerol.


Assuntos
Nanopartículas/química , Nanotecnologia/métodos , Óptica e Fotônica/instrumentação , Dióxido de Silício/química , Glicerol , Microscopia Eletrônica de Varredura , Nitrogênio/química , Tamanho da Partícula , Porosidade , Difração de Raios X
3.
Acta Crystallogr B ; 69(Pt 1): 30-5, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23364457

RESUMO

The structure of low-temperature grown GaAs with equidistant δ-layers of Sb and P was studied by analysis of the X-ray curves, which was supported by optical absorption measurements and transmission electron microscopy. The simultaneous fitting of the X-ray reflectivity curve and diffraction ones for GaAs (004) and GaAs (115) crystallographic planes provided reliable information about the period of δ-layer superlattice, thickness of the Sb and P δ-layers, and amount of excess As. Variation of these parameters was documented when excess As precipitated into As nanoinclusions upon annealing. The Sb and P δ-layers impact differently on the As precipitation processes in low-temperature grown GaAs. The combination of Sb and P δ-layers appears to be an effective tool for spatial patterning of the nanoinclusion array and prevention of the defect formation under annealing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA